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Evolutionary Nash Program

• The Nash Program works to link noncooperative game theory and cooperative
game theory.

• The Evolutionary Nash Program works to link evolutionary game theory and
cooperative game theory.

• Dynamic models of cooperative games.

• Understanding cooperative solution concepts in terms of the processes that can
lead to them.
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Matching

Stable matches, dynamics, one-
shot principle and evolutionary
axiomatization.
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Marriage problem

• Set of men M = {m1, . . . ,mk}
• Set of women W = {w1, . . . , wl}
• Players N = M ∪W

• Matchings G, undirected bipartite networks

• Each player matched to ≤ 1 other player.

• g(i) is the partner of i at g ∈ G.

• g(i) = ∅ indicates that i is single at g ∈ G.

7



w1 w2

m1

m2

8, 2 7, 9

5, 6 7, 5

m1

m2

w1

w2

Payoff of zero when unmatched.

Marriage problem

• Player i has utility ui(g), g ∈ G.

• Players only get utility from own partner.

— If g(i) = g′(i), then ui(g) = ui(g
′)

• Strict preferences over partners

— If g(i) ̸= g′(i), then ui(g) ̸= ui(g
′)
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S = {gM , gW }
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Stable matchings

Definition (Stable matchings)

A matching g is stable if

1. There are no i, j = g(i) such that i prefers to
be single than matched to j.

2. There are no i, j who prefer one another to
their partners at g.

Let S ⊆ G be the set of stable matchings.
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Payoff of zero when unmatched.

Ra = {gW } ⊂ {gM , gW } = S

Rawlsian stable matchings

Definition (Rawlsian stable matchings)

The set of Rawlsian stable matchings is

Ra = argmax
g∈S

min
i∈N

ui(g)

Rawlsian stable matchings are the stable matchings
that maximize the lowest payoff amongst all players.
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? ?Matching dynamics

Consider the following dynamic, t = 1, 2, . . ..

• State space is G.

• Every period, a man and a woman meet.

• If currently matched to one another, they
consider separating.

— Separate if at least one accepts separation.

• Otherwise, they consider leaving existing
partners and matching with one another.

— Match if both accept this.
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Matching dynamics

From state gt, faced with the prospect of g′, a player i will

• Accept g′ with high probability if ui(g
′) > ui(g

t).

• Accept g′ with probability εφ(ui(g
t),ui(g

′)) if ui(g
′) < ui(g

t).

Definition (Condition dependence)

Behavior is condition dependent if φ is such that, for all u, u′, v, v′ ∈ R, u > u′,
v > v′, u > v, we have that φ(u, u′) > φ(v, v′).

Acceptance of a detrimental change is less likely when current payoffs are higher.

12



Condition dependence and Rawlsian matchings

For sets M , W , let U be the set of all possible utilities.

Let SS denote the set of stochastically stable matchings.

Theorem

1. If behavior is condition dependent, then ∀u ∈ U , we have SS ⊆ Ra.

2. If behavior is not condition dependent, then ∃u ∈ U such that SS ̸⊆ Ra.

That is, an axiomatization of Rawlsian stable matchings in terms of behavioral rules.
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Condition dependence and Rawlsian matchings

• To leave a stable matching requires some player to accept a change that leads to
a lower payoff.

• Under condition dependence, it is easier to accept such a change when current
payoffs are low.

• The makes Rawlsian stable matchings the stable matchings that are hardest to
leave with an initial mistake (one-shot stability).

• There exists a result that, in this type of matching problem, stochastically stable
matchings are contained within the one-shot stable matchings.
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Bargaining solutions

A characterization of solutions in
terms of dynamic processes.



Bargaining frontier

• Players α and β

• Bargaining frontier f(·)
• Pareto allocations

— α gets t ∈ [0, s̄α]

— β gets f(t) ∈ [0, s̄β ]
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Bargaining frontier

• Discretize frontier

• Take payoff pairs
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Coordination game

• Put payoffs on diagonal
of coordination game

• Zero payoff off-diagonal
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Population dynamics

• Consider two populations, α and β

• Each population has size N

• State is strategies for every player

• Periods t = 1, 2, . . .
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Population dynamics

• A player updating at time t plays a perturbed best response to the mixture given
by the shares of strategies in the other population at time t− 1.

• Consider four types of perturbations, varying on two dimensions

— Uniform vs. Logit (have already seen these)

— Intentional vs. Unintentional
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Population dynamics

• Unintentional means no change (!)

• Intentional truncates perturbations so that a player
never asks for less than his best response.

• For example, if an α-player’s best response is
strategy 4, then under intentional perturbations

— may play strategy 5 (as a perturbation)
— will never play strategy 3
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Population dynamics

• Unintentional favours big transitions, e.g.

— α-players demand nothing
— β-players respond demanding everything
— s̄α and s̄β matter

• Intentional favours small transitions, e.g.

— α-players demand a little more
— β-players respond demanding a little less
— slope of f(·) matters

• Logit favours perturbations by those
currently receiving low payoffs
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Convergence to bargaining solutions

Theorem

For fine discretization, large N , SS states
approximate the following bargaining solutions

Unintentional Intentional
Uniform Kalai-Smorodinsky Nash
Logit Logit b.s. Egalitarian

45◦

tE

tKS

tL

s̄αs̄β

s̄β

s̄α
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Before we go...

• Of course, there is more to the Evolutionary Nash Program.

• General cooperative games, recontracting, convergence to the core, selection
within the core, general behavioral rules in matching, matching with transferable
utility.

• In general, the question of how aspects of culture arise and persist, embodied in
collective institutions and conventions.

• Evolution of the constraints themselves: individual constraints, collective
constraints, the traits that shape behavior.
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For references, see reading list.


