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Conventions & perturbed dynamics

Conventional behavior amongst members of a population is a regularity such that

1. Everyone conforms to this regularity all of the time.

2. Everyone expects (1).

3. Given (1), everyone wishes to conform.

For example,

• Which side of the road to drive on?

• Is it good manners to hold a door open?

• Appropriate clothes to wear to the office.
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Conventions & perturbed dynamics

Conventional behavior amongst members of a population is a regularity such that

1. Everyone conforms to this regularity all of the time.

2. Everyone expects (1).

3. Given (1), everyone wishes to conform.

Given the possibility of multiple conventions (stable equilibria), how can we decide
which, if any, will occur in the long run?
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Conventions & perturbed dynamics

Conventional behavior amongst members of a population is a regularity such that

1. Most people conform to this regularity most of the time.

2. Most people mostly expect (1) most of the time.

3. Given (1), most people wish to conform most of the time.

That is, we perturb aspects of the process, so that one or more of actions,
expectations or preferences are noisy/stochastic/random.
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Stochastic dynamics,
cycles and trees

Characterization of a popular
class of models that can handle
a wide variety of behavior.



Alice’s stochastic choice

Every period t ∈ N, she can play A or B. She prefers A, so will usually play A.
However, after playing A, she will sometimes make a mistake and play B.

• Define a family of Markov chains P ε on state space {A,B}.
• If state is A, then play A with probability 1− ε, play B with probability ε.

• If state is B, then play A with probability 1.
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1 ε

1− ε
Alice’s stochastic choice

• Define a family of Markov chains P ε on state
space {A,B}.

• If state is A, then play A with probability
1− ε, play B with probability ε.

• If state is B, then play A with probability 1.

• Invariant probability distribution µε puts weight
µε(A) = 1

1+ε , µ
ε(B) = ε

1+ε .

• So if we let ε → 0, then µε(A) → 1.
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1 ∈ Θ(ε0) ε ∈ Θ(ε1)

1− ε ∈ Θ(ε0)

f(ε) ∈ Θ(εr)⇔ ∃d1, d2, ε̄ > 0 :

∀ε < ε̄, d1ε
r ≤ f(ε) ≤ d2ε

r

Alice’s stochastic choice

• Order of magnitude of probabilities can be
given in terms of powers of ε.

• Here we only have ε0 and ε1, but in general
can have εr, where larger r corresponds to
lower probability events.

• For example, r might be higher for transitions
that require more mistakes, larger mistakes,
greater coordination of mistakes across players.
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Θ(ε0) Θ(ε1)

Θ(ε0)

f(ε) ∈ Θ(εr)⇔ ∃d1, d2, ε̄ > 0 :

∀ε < ε̄, d1ε
r ≤ f(ε) ≤ d2ε

r

Alice’s stochastic choice

• If we don’t know the exact transition
probabilities, but know their orders of
magnitude (r values),...

• ...can still show that if ε → 0, then µε(A) → 1.

• That is, r values are a useful statistic when we
consider small perturbations.

• Assume small perturbations, i.e. small ε, from
now on.

13



A

B

Θ(ε0) Θ(ε1)

Θ(ε0)

f(ε) ∈ Θ(εr)⇔ ∃d1, d2, ε̄ > 0 :

∀ε < ε̄, d1ε
r ≤ f(ε) ≤ d2ε

r

Alice’s stochastic choice

• If we don’t know the exact transition
probabilities, but know their orders of
magnitude (r values),...

• ...can still show that if ε → 0, then µε(A) → 1.

• That is, r values are a useful statistic when we
consider small perturbations.

• Assume small perturbations, i.e. small ε, from
now on.

14



A

B

Θ(ε0) Θ(ε1)

Θ(ε0)

f(ε) ∈ Θ(εr)⇔ ∃d1, d2, ε̄ > 0 :

∀ε < ε̄, d1ε
r ≤ f(ε) ≤ d2ε

r

Alice’s stochastic choice

• If we don’t know the exact transition
probabilities, but know their orders of
magnitude (r values),...

• ...can still show that if ε → 0, then µε(A) → 1.

• That is, r values are a useful statistic when we
consider small perturbations.

• Assume small perturbations, i.e. small ε, from
now on.

15



A

B

Θ(ε0) Θ(ε1)

Θ(ε0)

f(ε) ∈ Θ(εr)⇔ ∃d1, d2, ε̄ > 0 :

∀ε < ε̄, d1ε
r ≤ f(ε) ≤ d2ε

r

Alice’s stochastic choice

• If we don’t know the exact transition
probabilities, but know their orders of
magnitude (r values),...

• ...can still show that if ε → 0, then µε(A) → 1.

• That is, r values are a useful statistic when we
consider small perturbations.

• Assume small perturbations, i.e. small ε, from
now on.

16



A

B

0 1

0
Alice’s stochastic choice

• Let’s write the r values on the edges of our
graph.

• Don’t forget that larger values mean (much!)
smaller probabilities.

• Interested in flow of probability between states.
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Multiple players

• For situations with multiple players, can define
an appropriate state space.

• For example, the set of all possible strategy
profiles, or the set of all Nash equilibria.
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Multiple players

• Let’s consider a situation with multiple states
and solve it.

• Here we have four states, u, v, w, z.

• r values are given on edges. E.g. Transition
from w to u has an order of magnitude of ε2.
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Cycles in behavior

• Select the most likely transitions from each
state (shown in red).

• There will be a cycle in red edges.

• E.g. u → v → w → u is such a cycle.

• Within this cycle, most time will be spent at u.

• Technical. Time spent at v approximately
ε−2

ε−4 = ε2 of the time spent in {u, v, w}.

20



u

v

w

z

4

2

23

3

4

5

Cycles in behavior

• Select the most likely transitions from each
state (shown in red).

• There will be a cycle in red edges.

• E.g. u → v → w → u is such a cycle.

• Within this cycle, most time will be spent at u.

• Technical. Time spent at v approximately
ε−2

ε−4 = ε2 of the time spent in {u, v, w}.

21



u

v

w

z

4

2

23

3

4

5

Cycles in behavior

• Select the most likely transitions from each
state (shown in red).

• There will be a cycle in red edges.

• E.g. u → v → w → u is such a cycle.

• Within this cycle, most time will be spent at u.

• Technical. Time spent at v approximately
ε−2

ε−4 = ε2 of the time spent in {u, v, w}.

22



u

v

w

z

4

2

23

3

4

5

Cycles in behavior

• Select the most likely transitions from each
state (shown in red).

• There will be a cycle in red edges.

• E.g. u → v → w → u is such a cycle.

• Within this cycle, most time will be spent at u.

• Technical. Time spent at v approximately
ε−2

ε−4 = ε2 of the time spent in {u, v, w}.

23



u

v

w

z

4

2

23

3

4

5

Cycles in behavior

• Select the most likely transitions from each
state (shown in red).

• There will be a cycle in red edges.

• E.g. u → v → w → u is such a cycle.

• Within this cycle, most time will be spent at u.

• Technical. Time spent at v approximately
ε−2

ε−4 = ε2 of the time spent in {u, v, w}.
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u, v, w z

5 = (4− 2) + 3

4

Aggregating cycles

• Merge the cycle into a single state.

• Incoming edges have same weight as before.

• Outgoing edges adjusted by the time spent
within the cycle at the relevant states.

• Here we see that more time will be spent at
{u, v, w} than at z.

• Technical. Time spent at z approximately
ε−4

ε−5 = ε1 of the time spent in {u, v, w, z}.
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u, v, w, z

Aggregating cycles

• Repeat until you end up with one state.

• This cyclic decomposition has taught us about
behavior at different levels.

— Within {u, v, w, z}, the chain spends almost
all of the time in {u, v, w}.

— Within {u, v, w}, the chain spends almost all
of the time at u.

— u is the unique stochastically stable state.
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Disaggregating cycles
Chiu-Liu-Edmond’s algorithm

• Reversing the process, selecting “small” edges
at each step, we construct a tree (no cycles,
path from every vertex to a root vertex).

• The process we just followed is Chiu-Liu
Edmond’s algorithm for finding a tree with
minimal sum of edge weights.

Theorem (tree characterization)

Stochastically stable states correspond to the roots
of minimal spanning trees.
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· Take any tree rooted at v (not illustrated).

· Add edges v → w → u. Adds 2 + 2 = 4.

· Remove other edges exiting w, u.

Removes at least 2 + 4 = 6.

· So obtain tree rooted at u with lower sum

of edge weights.

· Therefore v is not stochastically stable.

Tree surgery

• Tree surgery, where a minimal tree is
conjectured to be rooted at some vertex v,
before it is shown that an even lower cost tree
can be constructed, usually by adding a path
from v to some u and deleting surplus edges.

• Immediate corollary (radius-coradius theorem)
is that if this is possible from any vertex to u,
then u is stochastically stable.
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Next...

• The tree characterization and associated surgery is used directly in almost all
existing applications of stochastic stability in economics.

• However, sometimes when we have behavioral rules and a target strategy profile
with special properties, we can bypass direct calculations.
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Asymmetry

The regularity from which classic
results on risk dominance arise.



s′ s′′

Alice Alice

Overlay

Asymmetry towards red implies

Prob(Alice plays red | s′) ≥
Prob(Alice plays transparent | s′′)

Probability to order of magnitude, i.e. r value.

All red means

s′ and s′′ are

red-associated.

Asymmetry
Definition

• Alice is a member of a set of players.

• Each player has two strategies, red and
transparent.

• Strategy profiles s′ and s′′ are red-associated if
every player plays red at s′ or s′′.

• Alice is asymmetric towards red if, for
red-associated s′ and s′′, her probability of
choosing red given current profile s′ is at least
as great (to order of mag.) as her probability
of choosing transparent given s′′.
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Alice Alice
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Prob(Alice plays red | s′) ≥
Prob(Alice plays transparent | s′′)
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All red means
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Asymmetry
Main theorem

Consider a process in which, every period some subset
of players independently update their strategies given
the current strategy profile. Assume that each player
updates with positive probability.

Theorem (Asymmetry implies stability)

If every player is asymmetric towards red, then
s∗ = (red, . . . , red) is stochastically stable.
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π(A,A) π(A,B)

π(B,A) π(B,B)

A B

A
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Coordination game with A

a risk dominant strategy.

π(A,A)− π(B,A) ≥
π(B,B)− π(A,B) > 0

Coordination on networks

• Finite set of players N .

• Each i ∈ N plays strategy si ∈ {A,B}.
• Payoff of player i at profile s is

Πi(si, s−i) =
∑

j∈N\i

wij π(si, sj).

• wij ≥ 0 is the influence of player j on player i.
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Behavioral rules
Based on payoff differences

• Payoff loss for i when changing strategy from s,

∆i(s) = Π(si, s−i)−Π(s′i, s−i), s′i ̸= si.

• Probability of player i changing strategy has order of magnitude εfi(∆i), where
fi : R → R+ is non-decreasing.

• That is, probability of changing strategy increases (decreases) in the payoff gain
(loss) from doing so.

• This includes rules such as

— Best response with uniform mistakes. fi(x) = 0 if x ≤ 0, fi(x) = 1 if x > 0.
— Logit choice. fi(x) = 0 if x ≤ 0, fi(x) = x if x > 0.
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Coordination game with A

a risk dominant strategy.

π(A,A)− π(B,A) ≥
π(B,B)− π(A,B) > 0

Coordination on networks
P-D based rules and RD implies asymmetry

Proposition

If player i follows a payoff-difference based rule and
A is risk dominant, then i is asymmetric towards A.

Corollary

If each player follows a payoff-difference based rule
and A is risk dominant, then (A, . . . , A) is
stochastically stable.

Note that the Corollary applies even if players follow
different payoff-difference based rules.
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Before we go, let’s note

• We have described asymmetry at the level of the individual. It can also be defined
for coalitions and for the process as a whole.

• Asymmetry can be used for many behavioral rules.

• For example, imitative rules, coalitional rules, altruistic choice, k-level thinking,
strange preferences.

• Can sometimes prove asymmetry for subsets of players, then take these players’
actions for granted in solving the remainder of the problem.
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For references, see reading list.


