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The hat guessing game involves n players who are identified with the vertices of a graph.
Each player wears a hat which is one of q possible colors. Players can observe the
colors of the hats worn by their neighbors on the graph but cannot observe the color
of their own hat. All of the players simultaneously guess their own hat color according
to a predetermined strategy which can depend on the colors of the hats worn by their
neighbors. The hat guessing number HG(G) of a graph G is the largest integer q such
that there exists a guessing strategy which guarantees that at least one player guesses
correctly no matter which colors are assigned.

A book Bd,n is a graph with two sets of vertices, the spine Vd and pages Vn, of size d
and n respectively, such that the induced graph on Vd is a complete subgraph, and each
vertex in Vn is adjacent to every vertex in Vd but to no other vertices.

Theorem 2 shows that, for sufficiently large n, we have HG(Bd,n) = 1 +
∑d

i=1 i
i. The

proof proceeds as follows. A set S ⊂ Nd is coverable if there exists a partition S1 t · · · tSd

such that Si contains at most one point along any line parallel to the i-th coordinate
axis. It was shown in [X. He and R. Li, Electron. J. Combin. 27 (2020), no. 3, Paper
No. 3.58; MR4245171] that, for large enough n, HG(Bd,n) is the size of the smallest
non-coverable set in d dimensions. In the current paper, coverability is reformulated
as a matching condition and P. Hall’s Marriage Theorem [J. London Math. Soc. 10

(1935), 26–30, doi:10.1112/jlms/s1-10.37.26] is used to show that S ⊂ Nd is coverable if
and only if S is numerically coverable (Lemma 8), where S is numerically coverable if∑d

i=1 |πi(S)| ≥ |S|, where πi(S) is the (d− 1)-dimensional projection of S onto the i-th
coordinate hyperplane.

The next step shows that all small enough sets are numerically coverable, thus proving
a lower bound onHG(Bd,n). Combined with an upper bound from [M. Gadouleau, SIAM
J. Discrete Math. 32 (2018), no. 3, 1922–1945; MR3835237], this proves the theorem.

Theorem 3 shows that for the complete bipartite graph K3,3, we have HG(K3,3) = 3.
A key part of the proof (Lemma 13) shows that HG(K3,3)≥ 4 if and only if there exist
three partitions P , Q, R of [4]3,

[4]3 = P1 tP2 tP3 tP4 =Q1 tQ2 tQ3 tQ4 =R1 tR2 tR3 tR4,

such that Pi ∪Qj ∪Rk contains a 3× 3× 3 cube for all choices of 1≤ i, j, k ≤ 4.
The proof then proceeds to show that such partitions cannot exist, so therefore

HG(K3,3)≤ 3. The proof is completed by noting that as K2,2 is a subgraph of K3,3 and
HG(K2,2) = 3, it must be that HG(K3,3)≥ 3 as well.

In addition, similar techniques are used to determine HG(·) for most windmill graphs,
graphs composed of complete subgraphs that share a single vertex. Jonathan Newton
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