
Copyedited by: ES MANUSCRIPT CATEGORY: Article

[15:48 20/10/2020 OP-REST200065.tex] RESTUD: The Review of Economic Studies Page: 1 1–25

Review of Economic Studies (2020) 0, 1–25 doi:10.1093/restud/rdaa063
© The Author(s) 2020. Published by Oxford University Press on behalf of The Review of Economic Studies Limited.
Advance access publication 13 October 2020

Conventions under
Heterogeneous Behavioural

Rules
JONATHAN NEWTON

Institute of Economic Research, Kyoto University

First version received August 2019; Editorial decision September 2020; Accepted September 2020 (Eds.)

Strategies of players in a population are updated according to the behavioural rules of agents, where
each agent is a player or a coalition of players. It is known that classic results on the stochastic stability of
conventions are due to an asymmetry property of the strategy updating process. We show that asymmetry
can be defined at the level of the behavioural rule and that asymmetric rules can be mixed and matched
whilst retaining asymmetry of the aggregate process. Specifically, we show robustness of asymmetry to
heterogeneity within an agent (Alice follows different rules at different times); heterogeneity between
agents (Alice and Bob follow different rules); and heterogeneity in the timing of strategy updating. These
results greatly expand and convexify the domain of behavioural rules for which results on the stochastic
stability of conventions are known.
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1. INTRODUCTION

Lewis (1969) argued that conventions, regularities in the behaviour of members of a population
when faced with a coordination problem, might arise from processes in which individuals in a
population follow simple, adaptive behavioural rules. Young (1993a) and Kandori et al. (1993)
formulated these ideas mathematically using the theory of Markov chains and showed, using the
ideas of Freidlin and Wentzell (1984), that conventions can be ranked by their stability properties
under given models of behaviour. Since then, the stability of conventions under a variety of
behavioural rules has been considered (see Sandholm, 2010; Newton, 2018).

Methodologically, agents (individuals or coalitions) in a population update their strategies
according to behavioural rules. This updating gives a Markov chain on the set of strategy profiles,
the transition probabilities of which can be summarized by a cost function. Typically, the cost
function then provides the input to a graph theoretic problem, the solution to which tells us
the stability of our conventions, the most stable conventions being known as stochastically
stable (Foster and Young, 1990). Peski (2010) showed that, if the cost function satisfies an
asymmetry condition with respect to one of the conventions, then that convention is stochastically
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2 REVIEW OF ECONOMIC STUDIES

Figure 1

Asymmetry. Vertices shaded grey play A. Unshaded vertices play B. The set of players that play A at σ̃ (i.e.

{Alice,Bob,Elle}) contains the set of players that play B at σ (i.e. {Bob,Elle}). Asymmetry towards A implies that

further adoption of A starting from σ̃ is at least as likely as further adoption of B starting from σ . Formal mathematical

definitions are given in Section 2.

stable.1 Considering an environment with two strategies, A and B, asymmetry towards A roughly
corresponds to the requirement that if strategy profiles σ , σ̃ are such that the set of players who
play B at σ is a subset of the set of players who play A at σ̃ , then switches to strategy B from
σ are weakly less likely than switches to strategy A from σ̃ . Thinking of A and B as alternative
technologies, we can interpret this to mean that if technology A is at least as widespread at σ̃ as
technology B is at σ , then further adoption of technology A from a starting point of σ̃ is at least
as likely as further adoption of technology B from a starting point of σ (Figure 1).

Here, instead of considering asymmetry of the aggregate process, we disaggregate our analysis
and consider asymmetry in behavioural rules. Specifically, for a given agent following a given
behavioural rule, we can consider the asymmetry of the fictional process in which that agent
updates and the remainder of the population never updates. This disaggregation allows us to
consider three dimensions of heterogeneity. Firstly, we consider heterogeneity within an agent.
It turns out that the set of asymmetric behavioural rules is convex. If two behavioural rules are
asymmetric towards a given strategy, then a compound rule that sometimes follows one of the
rules and sometimes follows the other is also asymmetric towards that strategy (Theorem 1).
Secondly, we consider heterogeneity between agents. If every agent follows a behavioural rule
that is asymmetric towards a given strategy, then the aggregate process is also asymmetric towards
that strategy (Theorem 2). Finally, we consider heterogeneity in the timing of strategy updating.
Asymmetry of the aggregate process does not depend on whether agents update their strategies
at the same time or at different times (Theorem 3).

Consequently, when every agent follows an identical behavioural rule, we can obtain results
on stochastic stability by showing asymmetry for a single representative agent. Many results
from the literature can be recovered in this manner and results for many alternative behavioural
rules can be derived.2 Even better, we can mix and match agents who follow different behavioural
rules, and if the agent-specific conditions for asymmetry are satisfied in each case, we are done. In

1. This result finally provided an affirmative answer to the long unanswered question of whether the strategy
profile at which every player plays a risk dominant strategy is stochastically stable under the best response with uniform
deviations behavioural rule for any network of interactions.

2. In particular, we consider behavioural rules, recover results, and extend results from Blume (1993), Blume
(1996), Young (1993a), Kandori et al. (1993), Peski (2010), Ellison (2000), Ellison (1993), Dokumaci and Sandholm
(2011), Norman (2009b), Maruta (2002), Blume (2003), Norman (2009a), Young (2011), Newton and Angus (2015),
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Figure 2

Properties relevant to asymmetry under classes of behavioural rule. Risk dominance and altruistic risk dominance are

conditions on relative incentives. Payoff dominance and maximin are ordinal conditions. Payoff dominance and

maximin together imply the “Lewis Conditions” on positive externalities of coordination. All behavioural rules and

properties are formally defined later in the article.

summary, we can treat the behavioural rules of agents in the population like Lego bricks. Firstly,
if every brick (behavioural rule) used in constructing the process is the same, then we can say
something about the entire process by analysing a single brick (a representative agent). Secondly,
if our bricks (behavioural rules) are heterogeneous but they all satisfy asymmetry, then we can
combine them arbitrarily to construct processes that also satisfy asymmetry.

To give an example, Alice and Bob may update their strategies according to best response
rules (Section 4), perhaps occasionally collaborating to play a coalitional best response (Section
6.1). Alice may be a caring person who takes Bob’s welfare into account in her decision making
(also Section 4). Bob may take his moral philosophy seriously so that his choices have a Kantian
(Bergstrom, 1995; Alger and Weibull, 2013, 2016) aspect (Section 6.2). Their friend Colm may
follow an imitative rule, perhaps copying the strategy of whichever player currently has the highest
payoff (Section 5). For each of these rules, we give conditions under which asymmetry holds.
These include conditions on relative incentives such as risk dominance (Harsanyi and Selten,
1988) and an altruistic variant of risk dominance (Maruta, 2002), as well as ordinal conditions
such as payoff dominance, maximin and the “Lewis conditions” that relate to a debate between
Lewis and Gilbert (1981) over which games are appropriate to the study of conventions. Relevant
conditions for classes of behavioural rule are summarized in Figure 2.

Our results suggest that when faced with a problem of conventions, we should first check
whether the behavioural rules of agents are asymmetric. For example, if A is risk dominant, then
both the logit choice rule and best response with uniform deviations are asymmetric towards A
(Section 4). Hence, if some players follow the logit choice rule and the remainder follow best
response with uniform deviations, then it follows from Theorems 2 and 3 that the aggregate process
is asymmetric. Consequently, the convention at which every player plays A is stochastically stable.
We know this without having to consider basins of attraction, transition paths, potential functions,
spanning trees or any of the other methodology that usually surrounds such results.3

Kreindler and Young (2013), Bilancini and Boncinelli (2020), Newton (2012a), Sawa (2014), Malawski (1989), Schlag
(1998), Ellison and Fudenberg (1995), Axelrod (1984), Alós-Ferrer and Schlag (2009), and Ohtsuki et al. (2006).

3. Conditions for stochastic stability that apply to a large class of problems and do not require finding transition
paths are particularly rare. Exceptions include Blume (1993, 1996), who shows that potential maximizing strategy profiles
are stochastically stable when potential games are played under asynchronous log-linear dynamics; Alos-Ferrer and Ania
(2005), who provide a sufficient condition for stochastic stability in symmetric games under an imitation process; and
Newton and Sawa (2015), who provide a necessary condition for stochastic stability in matching problems. Note that
“radius-coradius” methods (Ellison, 2000, citing a no longer extant working paper of Evans) do not fall into this category
as they require the calculation of transition paths.
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Sections 4–6 consider the asymmetry property under broad classes of behavioural rules. While
previous studies have also considered classes of rules (e.g. Blume, 2003), our approach stands out
with respect to the variety of behavioural rules that it considers. Furthermore, convexity of the set
of asymmetric behavioural rules makes a huge number of hybrid rules accessible to study. This is
important, as evidence suggests that human behaviour can be a mixed bag, with empirical studies
of evolutionary dynamics finding aspects of both best response and imitation (Young and Burke,
2001; Selten and Apesteguia, 2005; Cason et al., 2013; Friedman et al., 2015).4 Relatedly, classes
of rules can be defined by their satisfaction of various properties (Alós-Ferrer and Weidenholzer,
2014). Indeed, the recent empirical work of Nax et al. (2016) employs such an approach.
Asymmetry can be thought of as such a property. Moreover, as asymmetry is defined directly on
choice probabilities, its presence or absence should be empirically observable without knowledge
of players’ payoffs.

Heterogeneity in various dimensions has been previously considered in the literature on
perturbed dynamics. A few examples are (i) the literature on stability in the (generalized)
Nash demand game, which incorporates heterogeneity in utility functions and sample sizes in
sample-based best response processes (e.g. Young, 1993b; Agastya, 1997, 1999; Newton, 2012b);
(ii) the literature on “clever agents,” which considers best response processes in which some subset
of players are “clever” and best respond to conjectured best responses rather than to the current
strategy profile (e.g. Sáez-Martı and Weibull, 1999; Matros, 2003); (iii) Schipper (2009), which
bridges the two most common classes of dynamic process, considering Cournot games played by
a population that includes both imitators and best responders; (iv) Alós-Ferrer and Netzer (2015),
which considers the effect of heterogeneity in the timing of strategy updating and, more generally,
discusses robustness of stochastic stability when the exact updating rules that players follow are
unknown. Finally, we note that in the conceptually related, but methodologically different, field
of continuous evolutionary dynamics, there exists a literature on dynamics on populations of
heterogeneous types (e.g. Ely and Sandholm, 2005; Zusai, 2018).

The article is organized as follows. Section 2 gives the model. Section 3 gives our main
theoretical results. Section 4 applies these results to payoff-difference based behavioural rules,
a class that includes the most popular best response rules. Section 5 does similarly for imitative
rules. Section 6 considers coalitional rules, Kantian payoff transformations and altruistic payoff
transformations. Section 7 concludes. Proofs are relegated to the Appendix.

2. MODEL

Let V be a finite set of players and {A,B} the set of strategies available to each player. Discussion
of situations with more than two strategies is deferred to Section 3.1. A strategy profile σ ∈� :=
{A,B}V is a function σ :V →{A,B} that associates each player with one of the two strategies. Let
σA, σB be the homogeneous strategy profiles such that for all i∈V , σA(i)=A, σB(i)=B. Let σS
denote σ restricted to the domain S ⊆V . Denote by VA(σ )⊆V the set of players who play strategy
A at profile σ and by VB(σ )⊆V the set of players who play strategy B at profile σ .

Each player i∈V has a payoff function Ui :�→R such that Ui(σ ) gives the payoff of player
i at strategy profile σ . When we consider specific behavioural rules (Section 4 onwards), we shall

4. Of particular relevance to the current study, studies of evolution in coordination games have found support for
best response plus deviations with an intentional component (Mäs and Nax, 2016; Lim and Neary, 2016; Hwang et al.,
2018).
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assume

Ui(σ )=
∑

j∈V\{i}
uij

(
σ (i),σ (j)

)
, (Additive Separability) (2.1)

where, for all j �= i, uij : {A,B}2 →R gives the payoff of player i from his interaction with player j.
If uij is constant, then the payoff of player i is unaffected by the strategy of player j. In addition,
we shall assume

uij(A,A)≥uij(B,A),uij(B,B)≥uij(A,B). (Coordination) (2.2)

A special case of this specification is when each player plays some given coordination game
against every other player (e.g. Kandori et al., 1993; Young, 1993a) or against some subset of
players (e.g. Ellison, 2000, 1993).

Assume that the strategy profile evolves according to a discrete time Markov process on �.
Specifically, we define a family of Markov processes P={Pε}ε indexed by ε∈[0,1), where higher
values of ε correspond to a greater frequency of perturbations from the unperturbed process P0.
Let the state at time t be σ t . Let Pε be determined by the following steps. At time t+1, select
a subset S ⊆V of updating players according to a probability measure π on the power set of V .
Then, let σ t+1 be randomly determined according to a probability measure Pε

S(σ t,·) satisfying
Pε

S(σ t,σ )=0 if σV\S �=σ t
V\S . Note that Pε

S is also a Markov process on �. We shall refer to
the family {Pε

S}ε as a behavioural rule for S. In summary, the two step strategy updating process
selects a set S of updating players before (possibly) updating their strategies, leaving the strategies
of players outside of S unchanged. The relationship between Pε and {Pε

S}S⊆V is given by

Pε(σ,·)=
∑

S:π (S)>0

π (S)Pε
S(σ,·). (2.3)

We consider regular behavioural rules (Young, 1993a; see also Sandholm, 2010), the class
of rules that satisfy the following conditions. Let Pε

S be continuous in ε. If P0
S(σ,σ ′)=0 and

Pε̂
S(σ,σ ′)>0 for some ε̂>0, let {Pε

S(σ,σ ′)}ε satisfy

Pε
S(σ,σ ′)=

(
a+o(1)

)
εk for some a>0,k >0, (2.4)

where a,k may depend on σ , σ ′, S, but not on ε; and o(1) represents a term that vanishes as ε→0.
This class of rules includes popular rules such as the logit choice rule and best response with
uniform deviations. Finally, assume that there is strictly positive probability of the players in S
retaining their current strategies. That is, Pε

S(σ,σ )>0 for all σ , ε∈[0,1). Given that the ultimate
object of our analysis is the long run behaviour of the process as summarized by its invariant
measure, this is without loss of generality.5

For ε>0, assume that any state can be reached with positive probability from any other
state in some finite number of steps, therefore the overall process Pε is irreducible and has a
unique invariant probability measure με on the state space �. By standard arguments, the limit

5. If Pε
S∗ (σ ∗,σ ∗)=0 for some S∗, σ ∗, we can define P̄ε such that, for all S such that π (S)>0, for all σ , σ ′, σ �=σ ′,

P̄ε
S(σ,σ )=q+(1−q)Pε

S(σ,σ ), P̄ε
S(σ,σ ′)= (1−q)Pε

S(σ,σ ′), for some arbitrary q∈ (0,1), where q can be considered to
measure inertia added to the original process. P̄ε then has the same invariant measure as Pε , but, for all S such that
π (S)>0, for all σ , P̄ε

S(σ,σ )>0.
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of με as ε→0 exists. For small ε, the process will spend most of the time at states which have
positive probability under this limiting measure. These are known as stochastically stable states
(Foster and Young, 1990).

Definition 1 σ ∈� is stochastically stable under P={Pε}ε if limε→0με(σ )>0.

Define the cost cS(σ,σ ′) of a transition by S from σ to σ ′ as the exponential rate of decay
of the probability of such a transition as ε→0. That is, for each family of processes PS ={Pε

S}ε,
S ⊆V , π (S)>0,

cS(σ,σ ′) :=
{

limε→0
logPε

S(σ,σ ′)
logε

if Pε̂
S(σ,σ ′)>0 for some ε̂>0,

∞ otherwise .
(2.5)

Cost functions measure the order of magnitude of transition probabilities for low values of ε.
Transitions with a high cost are less likely than transitions with a low cost. From (2.5), we see
that if P0

S(σ,σ ′)>0, then cS(σ,σ ′)=0. That is, transitions that can occur under the unperturbed
process have zero cost. In contrast, if a transition is only possible for ε>0, then cS(σ,σ ′)=k,
where k is the k from expression (2.4).6 Define a cost function c(·,·) for the overall process Pε

by dropping the S subscripts in (2.5). To relate this to cS(·,·), observe that if there exist distinct
S,T ⊆V such that Pε

S(σ,σ ′)>0 and Pε
T (σ,σ ′)>0, then it is the most likely of these transitions

(i.e. the lowest cost) which determines the overall likelihood of the transition. Specifically, we
derive

Lemma 1 c(σ,σ ′)=minS:π (S)>0cS(σ,σ ′).

We consider processes that satisfy a certain type of asymmetry. Asymmetry towards A means,
roughly speaking, that if σ , σ̃ are such that there is at least as much “A-ness” (players who play
A) at σ̃ as there is “B-ness” (players who play B) at σ , then switches to strategy A from σ̃ are at
least as likely as switches to strategy B from σ .

We first give the definition of asymmetry for processes in which a single player updates his
strategy (e.g. player i in Figure 3). Given a strategy profile σ , let σ (i) denote the strategy profile
which is identical to σ except for the strategy of player i. That is, σ (i)(j)=σ (j) for all j �= i, and
σ (i)(i) �=σ (i).

Definition 2 c{i}(·,·) is asymmetric towards A if, for all σ,σ̃ ∈� such that VB(σ )⊆VA(σ̃ ), if
i∈VA(σ ) and i∈VB(σ̃ ), then c{i}(σ,σ (i))≥c{i}(σ̃ ,σ̃ (i)).

Asymmetry towards B can be defined by a simple relabelling of strategies. For the remainder of
the article, we shall assume that unless specified otherwise, “asymmetry” refers to asymmetry
towards A.

Asymmetry was originally defined by Peski (2010) for c(·,·), that is for the aggregate process.
Taking σ and σ̃ as in Definition 2, his definition requires that for a transition away from σ to any
given σ ′, we can find a transition which is at least as likely from σ̃ to some σ̃ ′, such that the latter

6. To illustrate, a transition with a probability of ε2 has a cost of 2, whereas a transition with the lower probability
of ε3 has a cost of 3. The most common interpretation in the literature for these powers of ε has been the number of
mutations required to effect a transition. This corresponds to the best response with uniform deviations rule that we
consider in Section 4.
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Figure 3

Asymmetry at the individual level. Vertices shaded grey play A. Unshaded vertices play B. Note that

VB(σ )=VA(σ̂ )⊆VA(σ̃ ). That is, all players who play B at σ play A at σ̂ and σ̃ . In words, there is at least as much

“A-ness” at σ̂ and σ̃ as there is “B-ness” at σ . Consequently, asymmetry (Definition 2) implies that a transition from σ to

σ (i) (Panel [i]) is weakly less likely than a transition from σ̂ to σ̂ (i) (Panel [ii]) or a transition from σ̃ to σ̃ (i) (Panel [iii]).

transition only involves switches to A and the set of players who play A at σ̃ ′ includes the set of
players who play B at σ ′. This definition can also be applied to arbitrary, possibly non-singleton
S. We show in Appendix B that for singleton S, Definitions 2 and 3 are equivalent.

Definition 3 cS(·,·) is asymmetric towards A if, for any σ,σ ′,σ̃ ∈�, such that VB(σ )⊆VA(σ̃ ),
there exists σ̃ ′ ∈� such that VA(σ̃ )⊆VA(σ̃ ′), VB(σ ′)⊆VA(σ̃ ′) and cS(σ,σ ′)≥cS(σ̃ ,σ̃ ′).

The concept of asymmetry can be extended from cost functions to underlying processes in the
obvious way.

Definition 4 PS ={Pε
S}ε is asymmetric (towards A) if its cost function is asymmetric (towards

A).

It turns out that asymmetry of the aggregate process is a sufficient condition for the stochastic
stability of σA.

Theorem P (Peski, 2010). If c(·,·) is asymmetric towards A, then σA is stochastically stable.7

7. Peski (2010) also gives a strict version of asymmetry that ensures that σA is uniquely stochastically stable. The
theorems in the current paper can be stated and proved for strict asymmetry (see Newton, 2019). We choose to present
results for (non-strict) asymmetry as the definition is cleaner and it admits broader classes of behavioural rules.
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In the cited paper, Theorem P is used to show that risk dominance of strategy A implies
stochastic stability of σA under best response with either uniform or payoff-dependent deviations
for any network of interaction.8 In the next section, we give results that allow us to apply Theorem
P to processes that admit a great deal of heterogeneity in behavioural rules.

3. COMBINING ASYMMETRIES

We now present a lemma upon which the theorems of this section build. Asymmetry of cost
functions is preserved under minima.

Lemma 2 If cost functions c1 and c2 are asymmetric towards A, then min{c1,c2} is also
asymmetric towards A.

It follows from Lemma 2 that if we combine two asymmetric processes in such a way that
the resulting process has a cost function which is a minimum of the two original cost functions,
then the resulting process will also be asymmetric. This result allows us to consider two types
of heterogeneity in behavioural rules. These are heterogeneity within agents (Alice sometimes
follows one rule and sometimes follows another rule) and heterogeneity between agents (Alice
and Bob follow different rules). The first of these considers a set S of updating players that
sometimes chooses according to one rule and sometimes according to another.

Theorem 1 (Heterogeneity within agents)
If P̃S and P̄S are asymmetric towards A, then PS defined by Pε

S =λP̃ε
S +(1−λ)P̄ε

S, λ∈ (0,1), is
asymmetric towards A.

For example, Alice may sometimes follow a best response rule (see Section 4) and sometimes
follow an imitative rule (see Section 5), but as long as both rules are asymmetric, Theorem 1 tells
us that a process which combines them will also be asymmetric.9,10

The next theorem considers heterogeneity across updating sets of players. Each S that updates
with positive probability may do so according to a different behavioural rule.

Theorem 2 (Heterogeneity between agents)
If PS is asymmetric towards A for all S ⊆V such that π (S)>0, then P is asymmetric towards A.

For example, Alice may try to maximize Bob’s payoff (see Section 4), Bob may follow Homo
Moralis preferences (see Section 6.2), and sometimes Alice and Bob may even form a coalition

8. To give some context, when strategy A is risk dominant, stochastic stability of σA under best response plus
uniform deviations under uniform interaction (i.e. uij independent of i, j) was proved by Young (1993a) and Kandori et al.
(1993); possible multiplicity of stochastically stable states under best response plus uniform deviations for general
networks of interaction is described in Blume (1996); stochastic stability of σ A under logit choice (a form of best
response plus payoff-dependent deviations) for general finite networks of interaction is described in Blume (1996) and
Young (1998).

9. Note that the examples following Theorems 1, 2, and 3 are simple and illustrative. More complicated examples
are easy to construct. For example, Alice might follow one rule when she updates at the same time as Bob and another
rule when she updates at the same time as Colm. Alternatively, it could be that when Alice and Bob update at the same
time, their rules are perfectly correlated so that exactly one of them follows an imitative rule and exactly one of them
follows a best response rule.

10. A number of papers in the literature construct behavioural rules by additively combining perturbations with an
unperturbed behavioural rule. Supplementary Appendix H discusses how Theorem 1 applies to such models.
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for their mutual benefit (see Section 6.1), but as long as all three rules are asymmetric, Theorem
2 tells us that the aggregate process will also be asymmetric. As well as heterogeneity, Theorem
2 can help us to understand homogeneity. Consider a situation in which the only S selected with
positive probability are singleton players, each of whom follows the same behavioural rule. If we
can give some general conditions under which this behavioural rule is asymmetric for any given
representative agent, then Theorem 2 implies that the aggregate process must be asymmetric
under the same conditions. Later in the paper (Corollary 1), we show that the most famous results
in this literature can be recovered by this method.

The next theorem allows us to consider disjoint sets of players S and T that simultaneously and
independently follow asymmetric behavioural rules. When this is the case, the joint behavioural
rule for S∪T is also asymmetric.

Theorem 3 (Heterogeneity in timing)
Let S,T ⊆V, S∩T =∅, PS and PT be asymmetric towards A. If PS∪T satisfies, for all ε, σ , σ ′

S∪T ,

Pε
S∪T

(
σ,(σ ′

S∪T ,σV\(S∪T ))
)
=Pε

S

(
σ,(σ ′

S,σV\S)
)

Pε
T

(
σ,(σ ′

T ,σV\T )
)
,

then PS∪T is asymmetric towards A.

For example, if Alice follows an asymmetric behavioural rule and Bob follows an asymmetric
behavioural rule, then the aggregation of these rules is asymmetric regardless of whether Alice
and Bob adjust their strategies at different times or at the same time. In general, the possibility
of simultaneous strategic updating can be important. Alós-Ferrer and Netzer (2015) define a
robustness concept based on the possibility of the identity of stochastically stable states being
affected by simultaneity in updating. Arieli and Young (2016) need a particular combination
of simultaneity and non-simultaneity in strategy updating in order to obtain rapid convergence
to Nash equilibrium in a class of learning models. Theorem 3 shows that, when it comes to
asymmetry, we do not have to worry.

3.1. Asymmetry with more than two strategies

Before we move on to discuss examples of asymmetric processes and therefore the scope of the
above theorems, we briefly discuss asymmetry in environments with more than two strategies.
Indeed Peski (2010) defines asymmetry and proves Theorem P for such environments. The
fundamental difference is that with two strategies we consider asymmetry in terms of strategy
A versus strategy B, whereas with more than two strategies we consider asymmetry in terms of
strategy A versus all strategies other than A. Specifically, denote by V¬A(σ )⊆V the set of players
who play any strategy other than strategy A at profile σ . Asymmetry towards A is then defined
by replacing VB(·) in Definition 3 by V¬A(·). All of the above theorems and their proofs continue
to hold after this substitution.

Further discussion, a formal definition of asymmetry with arbitrary finite strategy sets and an
example are provided in Supplementary Appendix I. For the remainder of the main body of the
article, we focus on the two strategy case under a wide variety of behavioural rules.

4. CHOICE BASED ON PAYOFF DIFFERENCES

We first consider behavioural rules according to which the probability of an individual player
switching from his current strategy to the alternative strategy decreases in the vector of payoff
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losses from the switch. An updating player following such a rule acts according to a predisposition
to improve things, or at least not make them worse, for some group of players. When this group
is the updating player himself, we have the subclass of best/better response rules.11 As we shall
see, this class includes many rules that have been considered in the literature.

4.1. Definition of payoff-difference based rules

Consider the vector of differences in payoff for every player when player i changes his strategy
so that the strategy profile changes from σ to σ (i). That is, consider

Dσ
i :=

(
Uj(σ )−Uj(σ

(i))
)

j∈V
∈R

V .

Positive elements of Dσ
i correspond to payoff losses and negative elements of Dσ

i correspond to
payoff gains.

Let a payoff-difference based rule for player i be a behavioural rule that gives the following
cost function. For non-decreasing ϒi(·) :RV →R+,

c{i}(σ,σ ′) :=

⎧⎪⎨
⎪⎩

0 if σ ′ =σ,

ϒ(Dσ
i ) if σ ′ =σ (i),

∞ otherwise.

(4.1)

For completeness, in Appendix C, we give explicit choice probabilities that imply such cost
functions. Such rules satisfy the restriction on behaviour that if a transition is at least as good
(measured by changes in payoff) for everybody as another transition, then the first transition should
be no less likely to occur than the second. We shall now illustrate the breadth and flexibility of
this class of rules by giving some examples. Following this, we give sufficient conditions for the
asymmetry of such processes.

4.2. Examples of payoff-difference based rules

4.2.1. Utilitarian rules. A player i follows a utilitarian rule if, for some non-negative
vector λ∈R

V+, we have that

ϒi(x)=[λ·x]+, (4.2)

where [x]+ =max{0,x}. Under this rule, the probability of player i changing his strategy is
decreasing in a weighted sum of payoff changes when he does so. A special case of this is when
λi =1 and λj =0 for j �= i, in which case we have best response with log-linear deviations, which
for small ε approximates the logit choice rule (see Blume, 1993; Alós-Ferrer and Netzer, 2010).
This rule is self-regarding in the following sense.

Definition 5 A rule ϒi is self-regarding if ϒi(x)= f (xi) for some non-decreasing function f :
R→R+.

11. Fixed points of such rules define the equilibrium concepts of Cournot (1838) and Nash (1950). In his proofs of
the existence of Nash equilibria, Nash uses two best/better response mappings. Most famously (Nash, 1950), the classic
best response correspondence that is definitional to Nash equilibrium, but also, in an alternative proof (Nash, 1951), a
smoothed better response correspondence that allows the use of Brouwer’s rather than Kakutani’s fixed point theorem.
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The class of self-regarding payoff-difference based rules is effectively the class of skew-symmetric
rules considered by Blume (2003) and Norman (2009a). In contrast, if λj =1 for some j �= i and
λk =0 for k �= j, then we have a best friend forever rule, where player i makes his decisions
according to their impact on player j. Clearly, this rule is not self-regarding.

4.2.2. Best response with uniform deviations. A player i follows best response with
uniform deviations (Kandori et al., 1993; Young, 1993a) if

ϒi(x)=
{

1 if xi >0

0 if xi ≤0
, (4.3)

so that, for small ε, player i will rarely change his strategy unless his payoff weakly increases as
a consequence.

In Supplementary Appendix E, several further examples of payoff-difference based rules are
given. These include best response with log-quadratic deviations, which for small ε approximates
the probit choice rule in two strategy environments (Dokumaci and Sandholm, 2011); Hippocratic
rules which depend only on payoff losses and disregard payoff gains; and best response rules with
switching costs (Norman, 2009b).

4.3. Asymmetry of payoff-difference based rules

Recall that a risk dominant strategy (Harsanyi and Selten, 1988) for player i is a strategy that
maximizes his payoff when he faces an opponent who plays each strategy with equal probability.
Similarly, we define an altruistically risk dominant strategy for player i against player j to be a
strategy that player i should play to maximize the payoff of player j when player j plays each
strategy with equal probability. Maruta (2002) refers to this latter condition as dominance with
respect to homogeneous externality, as it compares the change in payoff of players of each strategy
when an opponent switches to that strategy. However, an interpretation as altruistic risk dominance
emphasizes the symmetry with risk dominance that is important to the results of this section.

Definition 6 Strategy A is RDi (risk dominant for i) if∑
j∈V\{i}

uij(A,A)+uij(A,B)≥
∑

j∈V\{i}
uij(B,A)+uij(B,B);

and ARDij (altruistically risk dominant for i against j) if

uji(A,A)+uji(B,A)≥uji(A,B)+uji(B,B).

These two properties turn out to be exactly what is required to give asymmetry of payoff-difference
based rules. Considering a population of only Alice and Bob, the intuition is clear. When A is
risk dominant for Alice, the payoff advantage to her of playing A (rather than B) when Bob plays
A is greater than the payoff advantage to her of playing B (rather than A) when Bob plays B. A
similar logic applies if we consider altruistic risk dominance and the effect of Alice’s strategy on
Bob’s payoffs. These asymmetries in payoff differences then translate directly into asymmetry
of choice probabilities.12

12. Much prior literature considers a given coordination game played across pairs on a network. Even allowing for
directed and weighted networks, this restricts each uij to the linear form uij(σ (i),σ (j))=λij u(σ (i),σ (j)) for some λij ∈R+.
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Proposition 1 If player i follows a payoff-difference based rule, A is RDi and

(i) ϒi is self-regarding, or
(ii) A is ARDij for all j,

then c{i}(·,·) is asymmetric towards A.

So, if Alice follows a self-regarding payoff-difference based rule such as best response with
uniform deviations and A is risk dominant for Alice, then her cost function will be asymmetric
(Proposition 1[i]). If Bob follows a utilitarian rule and tries to maximize the total payoff for him
and Alice, A is risk dominant for Bob and altruistically risk dominant for Bob against Alice, then
his cost function will be asymmetric (Proposition 1[ii]). If Alice and Bob alter their strategies
simultaneously, then the resulting cost function for S ={Alice,Bob} will also be asymmetric
(Theorem 3). If Pε is such that sometimes Alice alters her strategy, sometimes Bob alters his
strategy and sometimes they alter their strategies simultaneously, then the resulting cost function
for the combined process is asymmetric (Theorem 2), hence Theorem P applies and the state at
which both Alice and Bob play A is stochastically stable.

4.4. Summary of the proof technique

Proposition 1 and subsequent propositions in the main body of the article are proven by considering
asymmetry as the implication of two simpler conditions. These conditions are formally defined
in Appendix B, but can be simply described here in words. The first condition considers strategy
profiles σ and σ̂ that are complete opposites, such that for all i∈V , σ (i) �= σ̂ (i). Such profiles are
illustrated in Figure 3. When transitions towards A from σ̂ are at least as likely as corresponding
transitions towards B from σ , we say that the process is weakly asymmetric towards A. The second
condition considers strategy profiles σ̂ and σ̃ (also illustrated in Figure 3) such that every player
who plays A at σ̂ also plays A at σ̃ . When transitions towards A from σ̃ are at least as likely as
corresponding transitions towards A from σ̂ , we say that the process is supermodular towards A.
Taken together, weak asymmetry and supermodularity are sufficient conditions for asymmetry
(Lemma B.2 in Appendix B). The proof of Proposition 1 in Appendix C proceeds by proving
weak asymmetry and supermodularity and thus asymmetry.

4.5. Conditions are sufficient but not necessary for asymmetry

The conditions in Proposition 1 are sufficient for the asymmetry of all payoff-difference based
rules. However, for any particular given payoff-difference based rule, weaker conditions will
usually suffice. Consider V ={i,j} and let i follow a utilitarian rule (see Section 4.2) with λi =
λj =1/2. That is, i makes decisions according to the average effect it has on himself and on
player j. Let payoffs be given by the game in Figure 4. Note that uij(A,A)+uij(A,B)=7<8=
uij(B,A)+uij(B,B), so that A is not risk dominant for i. From any strategy profile σ at which
player i plays A, the average payoff of the two players will decrease if i switches to B. From
(4.1) and (4.2), we obtain that c{i}(σ,σ (i))>0. However, from any strategy profile σ̃ at which
player i plays B, the average payoff of the two players will increase if i switches to A. Therefore,

When this is the case, u(A,A)+u(A,B)≥u(B,A)+u(B,B) implies that A is RDi for all i. Similarly, u(A,A)+u(B,A)≥
u(A,B)+u(B,B) implies that A is ARDij for all i,j. Maximin and payoff dominance conditions considered later in the
article also simplify under these payoffs.
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Figure 4

Payoffs. For each combination of A and B, entries give payoffs for player i and j respectively.

c(σ̃ ,σ̃ (i))=0. Clearly, the conditions of Definition 2 will be satisfied, so that the behavioural rule
of player i is asymmetric towards A despite not satisfying the conditions of Proposition 1.

4.6. Relation to the literature

If A is RDi and player i follows a self-regarding payoff-difference based rule, then c{i} is
asymmetric towards A (Proposition 1[i]). If this holds for all i∈V and only individual players
update their strategies, then the aggregate process is asymmetric towards A (Theorem 2), hence
Theorem P applies and σA is stochastically stable. We have the following corollary.

Corollary 1 Let π ({i})>0 for all i∈V, π (S)=0 otherwise. If, for all i∈V, A is RDi and i
follows a self-regarding payoff-difference based rule, then σA is stochastically stable.

This corollary nests existing results on stochastic stability under best response with uniform
deviations and own-payoff based rules (Peski, 2010, Theorems 2 and 3, respectively), special cases
of which include best response with uniform deviations and uniform interaction (Kandori et al.,
1993; Young, 1993a); best response with uniform deviations on specific interaction structures such
as the ring network and the two dimensional square lattice with von Neumann neighbourhoods
(Ellison, 2000, 1993); and best response with log-linear deviations for any interaction structure
(Blume, 1996; Young, 1998). Considering the full set of self-regarding payoff-difference based
rules, but restricting attention to uniform interaction with each agent following the same rule, the
Corollary is effectively the result of Blume (2003, Theorem 1). Combining this with Theorem 3
of the current article then gives us the equivalent result for simultaneous choice Norman (2009a,
Theorem 1).13

5. IMITATIVE CHOICE

A process is imitative if an updating player is more likely to switch to a strategy that currently
obtains high payoffs for those who play it. Let C ⊆V be player i’s comparison set. When player
i considers changing his strategy, his switching probability will depend on the current payoffs
of the players in his comparison set. Specifically, his switching probability is weakly decreasing
in the payoffs of those in his comparison set who currently play the same strategy as himself,
and weakly increasing in the payoffs of those in his comparison set who play the alternative
strategy.14 Here, we specifically focus on two rules, although the reader interested in further

13. The qualifier “effectively” here refers to the fact that both Blume (2003) and Norman (2009a) deal with strict
risk dominance and unique stochastic stability for large populations, whereas here we deal with (not necessarily strict)
risk dominance and (not necessarily unique) stochastic stability, without any restriction on population size.

14. A variety of imitative rules have been studied in the literature. For example, player i may sample some player j
in his comparison set and adopt j’s strategy if j obtains a higher payoff than i, that is if Uj(σ )>Ui(σ ) (Malawski, 1989).
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study of imitative rules will find parts of the proofs in Supplementary Appendix D (particularly
Lemma 7) to be of general applicability.

5.1. Condition dependence

We begin with the simple case in which player i has a comparison set that contains only himself.
That is, C ={i}. In this case, the switching probability for player i decreases in his current payoff
Ui(σ ) and is independent of the payoffs of the other players. More formally, from any state σ , the
transition cost c{i}(σ,σ (i)) is given by some weakly increasing function that has the current payoff
of player i as its argument. This is known as condition dependence (Bilancini and Boncinelli,
2020) after the biology literature. The justification for the use of such a rule is simple: if one is
obtaining a low payoff, it makes sense to try something else.

A strategy is payoff dominant for i against j if, when i and j coordinate on that strategy, a
higher payoff is obtained for i than would be the case if they coordinated on the other strategy.
Similarly, a strategy is maximin for i against j if it maximizes the payoff of i in the worst case
scenario, that of miscoordination.

Definition 7 Strategy A is PDij (payoff dominant for i against j) if

uij(A,A)≥uij(B,B);
and MMij (maximin for i against j) if

uij(A,B)≥uij(B,A).

These two properties turn out to be exactly what is required to give asymmetry of condition
dependent rules. The intuition is clear if we consider the case of only two players, V ={i,j}.
Payoff dominance of A for i against j ensures that, comparing two states of coordination σ =
(σi,σj)= (A,A) and σ̃ = (B,B), we have Ui(σ )≥Ui(σ̃ ), so switches by i to A at σ̃ are at least as
likely as switches by i to B at σ . Similarly A being maximin for i against j ensures that, comparing
states of miscoordination σ = (A,B) and σ̃ = (B,A), switches by i to A at σ̃ are at least as likely
as switches by i to B at σ . Finally, coordination ensures that the same applies for σ = (A,A) and
σ̃ = (B,A).

Proposition 2 If player i follows a condition dependent rule, A is PDij and MMij for all j, then
c{i}(·,·) is asymmetric towards A.

Again, the conditions of Proposition 2 are sufficient but not necessary. Their tightness will
depend on the situation under consideration. Consider V ={i,j} and let i follow a condition
dependent rule such that c{i}(σ,σ (i))=0 if Ui(σ )<0 and c{i}(σ,σ (i))=1 if Ui(σ )≥0. This can be
interpreted as player i switching his strategy with a high probability if his payoff is less than some

A smoothed version of this rule has i switching to j’s strategy with a probability proportional to Uj(σ )−Ui(σ ) (Schlag,
1998). Alternatively, player i may simultaneously consider the payoffs of all of the players in his comparison set and adopt
the strategy associated with the highest average payoff (Ellison and Fudenberg, 1995) or the strategy of whichever player
currently obtains the highest payoff (Axelrod, 1984). In the biology literature (see Ohtsuki et al., 2006), it is common to
assume that the strategy of each player in the comparison set is adopted with a probability proportional to that player’s
payof—a death–birth Moran process. If every player simultaneously follows such a process (a possible application of
Theorem 3), then we have a Wright–Fisher process (see Lehmann et al., 2007). For a survey of imitative rules, the reader
is referred to Alós-Ferrer and Schlag (2009).
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Figure 5

Payoffs. For each combination of A and B, entries give payoffs for player i.

threshold (zero in this case) and rarely switching his strategy otherwise. Neither of the possible
sets of payoffs for player i that are given in Figure 5 satisfy A being maximin for i against j.
Considering the payoffs in Figure 5(i), we see that for σ = (σi,σj)= (A,B), σ̃ = (B,A), we have
c{i}(σ,σ (i))=0 and c{i}(σ̃ ,σ̃ (i))=1, violating the conditions for asymmetry towards A (Definition
2). However, if instead payoffs are as given by Figure 5(ii), then any switch by player i from B
to A has a cost of zero regardless of the strategy of player j. Thus the conditions for asymmetry
towards A are trivially satisfied (see Definition 2), despite the conditions of Proposition 2 not
being satisfied.

5.2. Imitate the best

We now consider imitate-the-best rules. When a player follows such a rule, he considers the
players in his comparison set and compares the highest payoff obtained by any player who plays
A to the highest payoff obtained by any player who plays B. He is then more likely to switch to
strategies associated with high payoffs and less likely to switch away from strategies associated
with high payoffs. More formally, from any state σ , the transition cost c{i}(σ,σ (i)) is given by
some function that has two arguments. The first argument is the maximum payoff obtained at σ

among all players in player i’s comparison set who play the same strategy as i at σ . The function
weakly increases in the first argument. The second argument is the maximum payoff obtained at σ
among all players in player i’s comparison set who play the alternative strategy at σ . The function
weakly decreases in the second argument. If one or the other of these maxima is undefined due
to no players in the comparison set playing that strategy, then c{i}(σ,σ (i)) takes its lowest and
highest values respectively. Details can be found in Supplementary Appendix D. Conditions that
guarantee asymmetry for this class of behavioural rules are similar to those discussed above
for condition dependence, the difference being that when following an imitate-the-best rule, the
choices of player i depend on the payoffs of other players in his comparison set.

Proposition 3 If player i follows an imitate-the-best rule, A is PDjk and MMjk for all j∈C, k,
then c{i}(·,·) is asymmetric towards A.

Again, the conditions of Proposition 3 are sufficient but not necessary. To see this, note that if
C ={i}, then imitate-the-best rules reduce to condition dependent rules, which we have already
discussed. We further note that conditions PDjk and MMjk are stronger than conditions on payoffs
in prior studies (Robson and Vega-Redondo, 1996; Alós-Ferrer and Weidenholzer, 2008; Khan,
2014) that give stochastic stability of σA under an imitate-the-best rule when A is PDjk but not
MMjk . These studies involve interaction structures and comparison sets set up in such a way
that the payoff advantage of A over B from coordinated pairs (as discussed before Proposition 2)
outweighs any payoff disadvantage from miscoordinated pairs.
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The proofs of Propositions 2 and 3 use the fact that PDij and MMij together imply uij(B,B)≥
uij(B,A) and uij(A,A)≥uij(A,B), meaning that switching a player j from B to A increases the
payoff of i if he is already playing A and decreases the payoff of i if he is already playing B.
For condition dependent and imitate-the-best rules, this in turn increases the probability of player
i choosing A.15 Note that this argument would not hold if we instead considered an imitative
process based on average (rather than best) payoffs, as switching a player from B to A can lead
to a reduction in the average payoff of players who play A and an increase in the average payoff
of players who play B.

6. COALITIONS AND KANTIANISM

6.1. Coalitional choice

In Supplementary Appendix F, we consider a coalitional variant of payoff-difference based rules.
This models situations in which subsets of players get together and decide whether they should
play A or play B (see Newton, 2012a; Sawa, 2014; Newton and Angus, 2015). When it comes to
conditions for asymmetry, the difference between individualistic and coalitional payoff-difference
based rules can be concisely explained. Firstly, similar to the individualistic case, we must consider
the interaction of a coalition of players with those outside of the coalition. This gives rise to risk
dominance and altruistic risk dominance conditions similar to those we saw in Section 4. Secondly,
unlike the individualistic case, we must also consider the payoffs that players within the coalition
obtain from interacting with each other. This gives rise to payoff dominance conditions similar
to those we saw in Section 5.

6.2. Payoff transformations—Kantian

Sometimes payoff transformations can carry conceptual weight.16 In Supplementary Appendix
G, we consider the Homo Moralis transformation (Bergstrom, 1995; Alger and Weibull, 2013,
2016) which combines standard payoffs with a Kantian component, the latter being a consideration
along the lines of “what strategy should I play if my opponent plays the same as I do?” When the
behavioural rule is payoff-difference based and self-regarding, this leads to sufficient conditions
for asymmetry that are a convex combination of risk dominance and payoff dominance, the
payoff dominance aspect receiving higher weights when the Kantian component of behaviour is
stronger.17

6.3. Payoff transformations—altruistic

In Section 4, we considered other-regarding behavioural rules and considered their relationship
with altruistic risk dominance. A less flexible, though common approach is to apply a
transformation that combines a player’s own payoffs with those of his opponents. We show in

15. Interestingly, these inequalities correspond to conditions that Lewis (1969) imposes on the games he considers
in his philosophical theory of conventions. Gilbert (1981) later argued that these conditions were too stringent. Indeed,
as we saw in Section 4, they are not directly relevant to the class of payoff-difference based rules that has predominated
in game theoretic forays into this territory. However, they are of direct relevance to imitative choice.

16. Recent work has considered such transformations in relation to risk attitudes and loss aversion (Sawa and Wu,
2018; Nax and Newton, 2019).

17. Alger and Weibull (2016) show that a stronger Kantian component of behaviour is more likely to evolve in
environments where interaction displays high levels of positive assortativity. Assortativity in turn can then be subject to
evolutionary pressures (see Nax and Rigos, 2016; Newton, 2017; Wu, 2017).
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Supplementary Appendix G that such an approach also fits into our framework and that, perhaps
unsurprisingly, it leads to sufficient conditions for asymmetry that are a convex combination of
risk dominance and altruistic risk dominance.

7. DISCUSSION

7.1. Bias towards A does not guarantee stochastic stability of σA

Theorem 2 together with Theorem P tells us that if all agents’ behavioural rules are asymmetric
towards A, then σA is stochastically stable. However, not every bias towards strategy A guarantees
stochastic stability of σA. In Section 4.4, we described how asymmetry can be considered as an
implication of two other conditions, weak asymmetry and supermodularity, both formally defined
in Appendix B. As the name suggests, weak asymmetry is a weaker condition than asymmetry.
Like asymmetry towards A, weak asymmetry towards A can be considered as a bias towards A.
However, even if every agent follows a weakly asymmetric rule, it may still be the case that σA is
not stochastically stable. In Appendix B, we show this with an example in which a bias towards A
coexists with a bias towards playing a different strategy to one’s opponent. When the former bias
is weaker than the latter bias, the only stochastically stable strategy profiles may involve some
players playing A and other players playing B.

7.2. Non-asymmetry preserving combinations of rules

We have seen how behavioural rules can be combined while retaining asymmetry. We now briefly
discuss a form of combination to which asymmetry is not robust. Consider rules such that an
agent will have a high proclivity to play A when some conditions are satisfied, and will have a
low proclivity to play A when the conditions are not satisfied. Consider two such “parent” rules
and assume they are asymmetric towards A. By Theorem 1, any compound rule that plays the
first rule some of the time and the second rule the rest of the time is asymmetric towards A. In
contrast, consider a “child” rule under which an agent will have a high proclivity to play A when
the conditions of both parent rules are satisfied, and will have a low proclivity to play A otherwise.
Clearly, the child rule is less disposed towards A than either of the parent rules. If this effect is
strong enough, then the child rule will not be asymmetric towards A.18

7.3. Afterword

In the first part of this article (Section 3), we showed how behavioural rules can be combined
whilst retaining asymmetry. We considered heterogeneity within agents’ rules (Theorem 1),
heterogeneity between agents’ rules (Theorem 2) and heterogeneity in the timing of strategy
updating (Theorem 3). In the second part of the article (Sections 4–6), we discussed behavioural
rules to which our theorems apply. It will be apparent to the reader that this does not exhaust what
can be said on this subject. Important avenues for future research would seem to include (i) the
study of more behavioural rules; (ii) the study of different payoff specifications; (iii) empirically

18. For example, consider V ={i,j} and rules for player i. Let σ be the current strategy profile. Parent rule 1:
If σi =A (respectively B), then player i chooses A with probability 1−ε2 (respectively ε). Parent rule 2: If σj =A
(respectively B), then player i chooses A with probability 1−ε2 (respectively ε). It is simple to verify that these rules are
asymmetric towards A. Child rule: If σi =A and σj =A, then player i chooses A with probability 1−ε2, otherwise he
plays A with probability ε. Considering σi =A, σj =B, σ̃i =B, σ̃j =A, we have that c(σ,σ (i))=0<1=c(σ̃ ,σ̃ (i)), violating
the condition for asymmetry in Definition 2.
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testing observed behaviour for asymmetry; (iv) applications to specific economic problems that
admit heterogeneity in behaviour.

Appendix

A. PROOFS OF GENERAL RESULTS

Proof of Lemma 1. Let log0
logε

:=∞. For all ε∈ (0,1), from (2.3), we obtain

max
S:π (S)>0

π (S)Pε
S(σ,σ ′)≤Pε(σ,σ ′)≤ max

S:π (S)>0
Pε

S(σ,σ ′). (A.1)

As logε<0, we have that logx
logε

is decreasing in x. Applying this transformation to (A.1), we obtain

logmaxS:π (S)>0π (S)Pε
S(σ,σ ′)

logε
≥ logPε(σ,σ ′)

logε
≥ logmaxS:π (S)>0 Pε

S(σ,σ ′)
logε

, (A.2)

which rearranges to give

min
S:π (S)>0

logπ (S)Pε
S(σ,σ ′)

logε
≥ logPε(σ,σ ′)

logε
≥ min

S:π (S)>0

logPε
S(σ,σ ′)

logε
. (A.3)

The first expression in (A.3) is bounded as follows

max
S:π (S)>0

logπ (S)

logε
+ min

S:π (S)>0

logPε
S(σ,σ ′)

logε
≥ min

S:π (S)>0

logπ (S)Pε
S(σ,σ ′)

logε
. (A.4)

Combining (A.3) and (A.4), we have

max
S:π (S)>0

logπ (S)

logε︸ ︷︷ ︸
→0 as ε→0

+ min
S:π (S)>0

logPε
S(σ,σ ′)

logε︸ ︷︷ ︸
→cS (σ,σ ′) as ε→0

≥ logPε(σ,σ ′)
logε︸ ︷︷ ︸

→c(σ,σ ′) as ε→0

≥ min
S:π (S)>0

logPε
S(σ,σ ′)

logε︸ ︷︷ ︸
→cS (σ,σ ′) as ε→0

. (A.5)

Taking limits of (A.5) as ε→0, we obtain

min
S:π (S)>0

cS(σ,σ ′)≥c(σ,σ ′)≥ min
S:π (S)>0

cS(σ,σ ′),

and therefore c(σ,σ ′)=minS:π (S)>0 cS(σ,σ ′).
‖

Proof of Lemma 2. Consider σ,σ ′,σ̃ ∈�, such that VB(σ )⊆VA(σ̃ ).
As c1(·,·) is asymmetric, there exists σ̄ ∈� such that VA(σ̃ )⊆VA(σ̄ ), VB(σ ′)⊆VA(σ̄ ) and

c1(σ,σ ′)≥c1(σ̃ ,σ̄ ). (A.6)

As c2(·,·) is asymmetric, there exists ¯̄σ ∈� such that VA(σ̃ )⊆VA( ¯̄σ ), VB(σ ′)⊆VA( ¯̄σ ) and

c2(σ,σ ′)≥c2(σ̃ , ¯̄σ ). (A.7)

Consequently, we have that

c(σ,σ ′) =︸︷︷︸
by defn of c

min{c1(σ,σ ′),c2(σ,σ ′)}

≥︸︷︷︸
by (A.6) and (A.7)

min{c1(σ̃ ,σ̄ ),c2(σ̃ , ¯̄σ )}

≥min
{
min{c1(σ̃ ,σ̄ ),c2(σ̃ ,σ̄ )},min{c1(σ̃ , ¯̄σ ),c2(σ̃ , ¯̄σ )}}

=︸︷︷︸
by defn of c

min
{
c(σ̃ ,σ̄ ),c(σ̃ , ¯̄σ )

}
,

so c(σ,σ ′)≥c(σ̃ ,σ̄ ) or c(σ,σ ′)≥c(σ̃ , ¯̄σ ), and the condition for c to be asymmetric is satisfied. ‖
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Proof of Theorem 1. Keep in mind that, as ε<1, logε<0, and let log0
logε

:=∞. Then, for all ε>0,

min

{
logλ

logε︸ ︷︷ ︸
→0 as ε→0

+ logP̃ε
S(σ,σ ′)

logε︸ ︷︷ ︸
→c̃S (σ,σ ′) as ε→0

,
log(1−λ)

logε︸ ︷︷ ︸
→0 as ε→0

+ logP̄ε
S(σ,σ ′)

logε︸ ︷︷ ︸
→c̄S (σ,σ ′) as ε→0

}
(A.8)

=min

{ log
(
λP̃ε

S(σ,σ ′)
)

logε
,

log
(
(1−λ)P̄ε

S(σ,σ ′)
)

logε

}

=
log

(
max

{
λP̃ε

S(σ,σ ′),(1−λ)P̄ε
S(σ,σ ′)

})
logε

≥
log

(
λP̃ε

S(σ,σ ′)+(1−λ)P̄ε
S(σ,σ ′)

)
logε

= logPε
S(σ,σ ′)

logε︸ ︷︷ ︸
→c(σ,σ ′) as ε→0

=
log

(
λP̃ε

S(σ,σ ′)+(1−λ)P̄ε
S(σ,σ ′)

)
logε

≥
log

(
2max

{
λP̃ε

S(σ,σ ′),(1−λ)P̄ε
S(σ,σ ′)

})
logε

=min

{ log
(

2λP̃ε
S(σ,σ ′)

)
logε

,
log

(
2(1−λ)P̄ε

S(σ,σ ′)
)

logε

}

=min

{
log(2λ)

logε︸ ︷︷ ︸
→0 as ε→0

+ logP̃ε
S(σ,σ ′)

logε︸ ︷︷ ︸
→c̃S (σ,σ ′) as ε→0

,
log(2(1−λ))

logε︸ ︷︷ ︸
→0 as ε→0

+ logP̄ε
S(σ,σ ′)

logε︸ ︷︷ ︸
→c̄S (σ,σ ′) as ε→0

}
.

Taking limits of (A.8) as ε→0, we obtain

min{c̃S(σ,σ ′),c̄S(σ,σ ′)}≥cS(σ,σ ′)≥min{c̃S(σ,σ ′),c̄S(σ,σ ′)},
and therefore cS(σ,σ ′)=min{c̃S(σ,σ ′),c̄S(σ,σ ′)}.
As P̃S and P̄S are asymmetric, c̃S and c̄S are asymmetric.

Lemma 2 then implies that cS is asymmetric, therefore PS is asymmetric. ‖
Proof of Theorem 2. By assumption, for all S such that π (S)>0, PS is asymmetric, so cS is asymmetric.

By Lemma 1, c=minS:π (S)>0 cS . We shall show that c is asymmetric, therefore P is asymmetric.

Let {S :π (S)>0}={S1,S2,...,Sn} and define cost functions ĉ1 =cS1
, ĉm :=min{ĉm−1,cSm

}=min{cS1
,...,cSm

} for m=
2,...,n. In particular,

ĉn =︸︷︷︸
by defn
of cn

min{cS1
,...,cSn

} =︸︷︷︸
by defn

of {S1,...,Sn}

min
S:π (S)>0

cS =︸︷︷︸
by Lemma 1

c,

We complete the proof by showing, by induction, that ĉm is asymmetric for m=2,...,n. By assumption, ĉ1 =cS1
is

asymmetric. Assume ĉm−1 is asymmetric for some m≤n. Then ĉm =min{ĉm−1,cSm
} is asymmetric by Lemma 2. ‖

Proof of Theorem 3. Consider σ,σ ′,σ̃ ∈�, such that VB(σ )⊆VA(σ̃ ). Let cS∪T be the cost function of PS∪T .

If cS∪T (σ,σ ′)=∞, we are done as then cS∪T (σ,σ ′)≥cS∪T (σ̃ ,σ̄ ) for any σ̄ .

If cS∪T (σ,σ ′)<∞, then σ ′ = (σ ′
S,σ ′

T ,σV\(S∪T )).

As cost functions are defined using logs of transition probabilities, it follows from the definition of PS∪T that

cS∪T (σ,σ ′)=cS(σ,(σ ′
S,σV\S))+cT (σ,(σ ′

T ,σV\T )). (A.9)

As (A.9) is finite, each of its terms are finite, so

cS(σ,(σ ′
S,σV\S))<∞, cT (σ,(σ ′

T ,σV\T ))<∞. (A.10)

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdaa063/5922648 by U

niversity of N
ew

 England user on 28 O
ctober 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[15:48 20/10/2020 OP-REST200065.tex] RESTUD: The Review of Economic Studies Page: 20 1–25

20 REVIEW OF ECONOMIC STUDIES

By asymmetry of cS , there exists ¯̄σ such that VA(σ̃ )⊆VA( ¯̄σ ), VB((σ ′
S,σV\S))⊆VA( ¯̄σ ), and

cS(σ,(σ ′
S,σV\S))≥cS(σ̃ , ¯̄σ ) (A.11)

Inequalities (A.10) and (A.11) imply that cS(σ̃ , ¯̄σ )<∞, which implies that ¯̄σ = (σ̄S,σ̃V\S) for some σ̄S . Therefore,

cS(σ,(σ ′
S,σV\S))≥cS(σ̃ ,(σ̄S,σ̃V\S)). (A.12)

Similarly, by asymmetry of cT , we obtain (σ̄T ,σ̃V\T ) such that VA(σ̃ )⊆VA((σ̄T ,σ̃V\T )), VB((σ ′
T ,σV\T ))⊆VA((σ̄T ,σ̃V\T )),

and

cT (σ,(σ ′
T ,σV\T ))≥cT (σ̃ ,(σ̄T ,σ̃V\T )). (A.13)

Let σ̄ = (σ̄S,σ̄T ,σ̃V\(S∪T )).

As VB((σ ′
S,σV\S))⊆VA( ¯̄σ )=VA((σ̄S,σ̃V\S)) and VB((σ ′

T ,σV\T ))⊆VA((σ̄T ,σ̃V\T )), it must be that VB(σ ′)=
VB((σ ′

S,σ ′
T ,σV\(S∪T )))⊆VA((σ̄S,σ̄T ,σ̃V\(S∪T )))=VA(σ̄ ).

Similarly, as VA(σ̃ )⊆VA( ¯̄σ )=VA((σ̄S,σ̃V\S)) and VA(σ̃ )⊆VA((σ̄T ,σ̃V\T )), it must be that VA(σ̃ )⊆VA((σ̄S,σ̄T ,σ̃V\(S∪T )))=
VA(σ̄ ).

Finally,

cS∪T (σ,σ ′)=cS(σ,(σ ′
S,σV\S))+cT (σ,(σ ′

T ,σV\T ))

≥︸︷︷︸
by (A.12) and (A.13)

cS(σ̃ ,(σ̄S,σ̃V\S))+cT (σ̃ ,(σ̄T ,σ̃V\T ))=cS∪T (σ̃ ,σ̄ ),

therefore, cS∪T is asymmetric. ‖

B. ADDITIONAL DEFINITIONS AND RESULTS FOR INDIVIDUAL
BEHAVIOURAL RULES

This section considers S ={i}, that is when only a single player updates his strategy (e.g. player i in Figure 3). Recall that,
given a strategy profile σ , σ (i) denotes the strategy profile which is identical to σ except for the strategy of player i. That
is, σ (i)(j)=σ (j) for all j �= i, and σ (i)(i) �=σ (i).

B.1. Proof that Definitions 2 and 3 are equivalent

Here, we show that when S ={i}, the two definitions of asymmetry given in Section 2 are equivalent.

Lemma B.1 c{i}(·,·) is asymmetric towards A under Definition 2 if and only if it is asymmetric towards A under
Definition 3.

Proof of Lemma B.1. We shall consider Definition 3 case by case, showing that in some cases the conditions in the
definition are always satisfied and that the remaining case reduces to Definition 2.

Consider σ,σ ′,σ̃ ∈�, such that VB(σ )⊆VA(σ̃ ).

If c{i}(σ,σ ′)=∞, then letting σ̄ =σA, we have VA(σ̃ )⊆VA(σ̄ ), VB(σ ′)⊆VA(σ̄ ), and c{i}(σ,σ ′)≥c{i}(σ̃ ,σ̄ ). The condition
in Definition 3 is satisfied.

If c{i}(σ,σ ′)<∞, then either σ ′ =σ or σ ′ =σ (i).

If σ ′ =σ or σ ′ =σ (i) for i∈VA(σ̃ ), then let σ̄ = σ̃ . We have VA(σ̃ )⊆VA(σ̄ ), VB(σ ′)⊆VA(σ̄ ), and c{i}(σ,σ ′)≥0=c{i}(σ̃ ,σ̄ ).
The condition in Definition 3 is satisfied.

Noting that i∈VB(σ ) implies that i∈VA(σ̃ ) (so the preceding case would apply), we have one remaining case, σ ′ =σ (i)

for i∈VA(σ ), i∈VB(σ̃ ). This implies that i∈VB(σ ′), so if we are to have VB(σ ′)⊆VA(σ̄ ), it must be the case that i∈VA(σ̄ ).
However, the only σ̄ that could possibly satisfy both this condition and c{i}(σ̃ ,σ̄ )<∞ is σ̄ = σ̃ (i). Therefore, the condition
in Definition 3 is satisfied if and only if c{i}(σ,σ (i))≥c{i}(σ̃ ,σ̃ (i)), which is exactly the condition in Definition 2. ‖

B.2. Considering asymmetry as an implication of weak asymmetry and supermodularity

When S ={i}, it will help to consider asymmetry as an implication of two other properties: weak asymmetry and
supermodularity.
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Definition B.1 c{i}(·,·) is weakly asymmetric towards A if, for all σ,σ̂ ∈� such that VB(σ )=VA(σ̂ ), if i∈VA(σ ), then
c{i}(σ,σ (i))≥c{i}(σ̂ ,σ̂ (i)).

States σ and σ̂ in Definition B.1 mirror each other in that players who play A at σ , play B at σ̂ , and players who
play B at σ , play A at σ̂ (see Figure 3[i,ii]). Weak asymmetry means that a switch from A to B by player i from state σ is
weakly less probable than a switch from B to A by player i from state σ̂ .

Definition B.2 c{i}(·,·) is supermodular towards A if, for all σ̂ ,σ̃ ∈� such that VA(σ̂ )⊆VA(σ̃ ), if i∈VB(σ̃ ), then
c{i}(σ̂ ,σ̂ (i))≥c{i}(σ̃ ,σ̃ (i)).

States σ̂ , σ̃ in Definition B.2 are such that all players who play A at σ̂ also play A at σ̃ (see Figure 3[ii,iii]). Let player
i be any player who plays B at both states. Supermodularity means that a switch from B to A by player i from state σ̂ is
weakly less probable than a switch from B to A by player i from state σ̃ . That is, switches by player i from B to A are
weakly more probable when more of the other players are playing A.

Lemma B.2 If c{i}(·,·) is weakly asymmetric towards A and supermodular towards A, then it is asymmetric towards A.

The notation chosen for Definitions B.1 and B.2 has been chosen to facilitate understanding of Lemma B.2 in terms
of these definitions. Specifically, if we consider σ , σ̂ , σ̃ as given in Definitions B.1 and B.2, we have

c{i}(σ,σ (i)) ≥︸︷︷︸
weak asymmetry

c{i}(σ̂ ,σ̂ (i)) ≥︸︷︷︸
supermodularity

c{i}(σ̃ ,σ̃ (i)), (B.1)

which implies the condition c{i}(σ,σ (i))≥c{i}(σ̃ ,σ̃ (i)) for asymmetry given in Definition 2. As it is possible that σ̃ = σ̂ ,
asymmetry implies weak asymmetry. In contrast, (B.1) tells us that if weak asymmetry holds strictly, then supermodularity
can be violated by some amount while retaining asymmetry.

Proof of Lemma B.2. Consider σ , σ ′, σ̃ such that VB(σ )⊆VA(σ̃ ), i∈VA(σ ), i∈VB(σ̃ ).

Let σ̂ be such that VB(σ )=VA(σ̂ ). Then, as c{i} is weakly asymmetric, by Definition B.1, we have that c{i}(σ,σ (i))≥
c{i}(σ̂ ,σ̂ (i)).

Note that VA(σ̂ )⊆VA(σ̃ ). Then, as c{i} is supermodular, by Definition B.2, we have that c{i}(σ̂ ,σ̂ (i))≥c{i}(σ̃ ,σ̃ (i)).

Combining the inequalities above, we have c{i}(σ,σ (i))≥c{i}(σ̃ ,σ̃ (i)), satisfying the condition for asymmetry of
Definition 2. ‖

B.3. Weak asymmetry of every agent’s rule does not imply stochastic stability

Here, we show that every agent having a behavioural rule that is weakly asymmetric towards A does not imply stochastic
stability of σA.

Let there be two players, |V |=2. For each player i, j �= i, let c{i}(σ,σ (i))=a(σ )+d(σ ), where a(σ )=1 if σi =A and is
zero otherwise, and d(σ )=2 if σi �=σj and is zero otherwise. There are two aspects to this cost function. First, a(·) gives
a bias towards A. Second, d(·) gives a bias towards playing a strategy different to that of the other player.

Letting σ =σ A and σ̃ = (σ̃i,σ̃j)= (B,A), we see that c{i}(σ,σ (i))=1 and c{i}(σ̃ ,σ̃ (i))=2, so Definition 2 is not satisfied
and c{i} is not asymmetric towards A.

However, it can be checked that Definition B.1 is satisfied, so c{i} is weakly asymmetric towards A.

Note that a transition from any profile at which both players play the same strategy to a profile at which the players play
different strategies has a cost of 0 or 1.

However, a transition from any profile at which the players play different strategies to a profile at which both players play
the same strategy has a cost of 2 or 3.

Hence, for small values of ε, the invariant measure of the process concentrates on the set of strategy profiles at which the
players play different strategies. That is, σA is not stochastically stable.

C. PROOFS FOR PAYOFF-DIFFERENCE BASED CHOICE

C.1. Explicit choice probabilities

For completeness, we here give some explicit choice probabilities, that is specific Pε{i} that satisfy the definition of
payoff-difference based rules given in Section 4.
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For non-decreasing ϒi(·) :RV →R+ and constant (with respect to ε) dσ
i ∈ (0,1), σ ∈�, let

Pε{i}(σ,σ )=1−dσ
i εϒi(Dσ

i ) and Pε{i}(σ,σ (i))=dσ
i εϒi(Dσ

i ), (C.1)

with the convention that 00 =1 so that Pε{i} is continuous in ε at ε=0. Such rules satisfy the restriction on behaviour
that if a transition is at least as good (measured by changes in payoff) for everybody as another transition, then the first
transition should be no less likely to occur than the second.

A strictly positive ϒi(Dσ
i ) implies that the probability of a transition from σ to σ (i) approaches zero as ε approaches

zero. In contrast, ϒi(Dσ
i )=0 implies that the probability of a transition from σ to σ (i) is strictly positive even under

the unperturbed process P0{i}. Substituting (C.1) into the definition of a cost function, we obtain (4.1), the definition of
payoff-difference based rules in Section 4.

C.2. Proof of Proposition 1

The proof of Proposition 1 proceeds by considering weak asymmetry and supermodularity as defined in Appendix B.
These two properties then imply asymmetry by Lemma B.2.

Lemma C.1 If player i follows a payoff-difference based rule, A is RDi and

(i) ϒi is self-regarding, or
(ii) A is ARDij for all j,

then c{i}(·,·) is weakly asymmetric towards A.

Proof of Lemma C.1. Let σ , σ̂ be such that VA(σ )=VB(σ̂ ), σ (i)=A.

Consider the elements of Dσ
i ,

(Dσ
i )j =Uj(σ )−Uj(σ

(i)) (C.2)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uji(A,A)−uji(A,B) if j �= i,σ (j)=A,

−(
uji(B,B)−uji(B,A)

)
if j �= i,σ (j)=B,∑

k∈VA(σ )\{i}
(

uik(A,A)−uik(B,A)
)

−∑
k∈VB(σ )\{i}

(
uik(B,B)−uik(A,B)

)
if j= i,

and the elements of Dσ̂
i ,

(Dσ̂
i )j =Uj(σ̂ )−Uj(σ̂

(i)) (C.3)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(
uji(A,A)−uji(A,B)

)
if j �= i, σ̂ (j)=A,

uji(B,B)−uji(B,A) if j �= i, σ̂ (j)=B,

−∑
k∈VA(σ̂ )\{i}

(
uik(A,A)−uik(B,A)

)
+∑

k∈VB(σ̂ )\{i}
(

uik(B,B)−uik(A,B)
)

if j= i.

Noting that VA(σ̂ )=VB(σ ) and VB(σ̂ )=VA(σ ), we can subtract (C.3) from (C.2) to get

(Dσ
i −Dσ̂

i )j (C.4)

=

⎧⎪⎪⎨
⎪⎪⎩

(
uji(A,A)−uji(A,B)

)−(
uji(B,B)−uji(B,A)

)
if j �= i,σ (j)=A,(

uji(A,A)−uji(A,B)
)−(

uji(B,B)−uji(B,A)
)

if j �= i,σ (j)=B,∑
k∈V\{i}

((
uik(A,A)−uik(B,A)

)
−

(
uik(B,B)−uik(A,B)

))
if j= i.

If A is RDi, then, from the third case of (C.4), we have that (Dσ
i −Dσ̂

i )i ≥0, so (Dσ
i )i ≥ (Dσ̂

i )i.
If ϒi is self-regarding, then (Dσ

i )i ≥ (Dσ̂
i )i implies that ϒi(Dσ

i )≥ϒi(Dσ̂
i ) and therefore, by (4.1), c{i}(σ,σ (i))≥

c{i}(σ̂ ,σ̂ ). That is, c{i}(·,·) is weakly asymmetric, proving Lemma C.1[i].
If A is ARDij for all j, then, from the first and second cases of (C.4), we have that (Dσ

i −Dσ̂
i )j ≥0 and (Dσ

i )j ≥ (Dσ̂
i )j for

all j �= i. Therefore Dσ
i ≥Dσ̂

i , and as ϒi is non-decreasing, ϒi(Dσ
i )≥ϒi(Dσ̂

i ) and therefore, by (4.1), c{i}(σ,σ (i))≥c{i}(σ̂ ,σ̂ ).
That is, c{i}(·,·) is weakly asymmetric, proving Lemma C.1[ii]. ‖
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Lemma C.2 If player i follows a payoff-difference based rule, then c{i}(·,·) is supermodular towards A.

Proof of Lemma C.2. Let σ̂ , σ̃ be such that σ̂ (i)= σ̃ (i)=B, VA(σ̂ )⊆VA(σ̃ ).

Using (C.3) for both Dσ̂
i and Dσ̃

i gives

(Dσ̂
i −Dσ̃

i )j (C.5)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
uji(A,A)−uji(A,B)

)−(
uji(A,A)−uji(A,B)

)=0 if j �= i, σ̂ (j)=A,(
uji(B,B)−uji(B,A)

)−(
uji(B,B)−uji(B,A)

)=0 if j �= i, σ̃ (j)=B,(
uji(A,A)−uji(A,B)

)+(
uji(B,B)−uji(B,A)

)
if j �= i, σ̃ (j)=A, σ̂ (j)=B,∑

k∈VA(σ̃ )\{i}
(

uik(A,A)−uik(B,A)
)

−∑
k∈VA(σ̂ )\{i}

(
uik(A,A)−uik(B,A)

)
+∑

k∈VB(σ̂ )\{i}
(

uik(B,B)−uik(A,B)
)

−∑
k∈VB(σ̃ )\{i}(σ̃ )

(
uik(B,B)−uik(A,B)

)
if j= i.

The third case of (C.5) is nonnegative by (2.2). The sum of the first two lines of the fourth case is non-negative by
VA(σ̂ )⊆VA(σ̃ ) and (2.2). The sum of the final two lines of the fourth case is nonnegative by a similar argument. So
every element (Dσ̂

i −Dσ̃
i )j is non-negative, Dσ̂

i ≥Dσ̃
i . As ϒi is non-decreasing, ϒi(Dσ̂

i )≥ϒi(Dσ̃
i ) and therefore, by (4.1),

c{i}(σ̂ ,σ̂ )≥c{i}(σ̃ ,σ̃ ). That is, c{i}(·,·) is supermodular. ‖
Proof of Proposition 1. By Lemmas C.1 and C.2, c{i}(·,·) is weakly asymmetric and supermodular, so by Lemma B.2,
c{i}(·,·) is asymmetric. ‖
Proof of Corollary 1. As A is RDi for all i∈V and all i∈V follow self-regarding payoff-difference based rules, Proposition
1[i] implies that c{i} is asymmetric for all i∈V . As, by assumption, π (S)>0 if and only if S ={i} for i∈V , Theorem 2
then implies that c=minS:π (S)>0 cS is asymmetric. By Theorem P, σA is stochastically stable. ‖
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