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a b s t r a c t

the prior support is finite, long-run ambiguity is known to be a possible outcome only if the learning
problem is misspecified (Marinacci and Massari, 2019). We show that if the prior support is naturally
rich, long-run ambiguity cannot occur.
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1. Introduction

Researchers have considered the implications of ambiguity
for many economic phenomena. Examples include trade (Kajii
and Ui, 2006), portfolio selection (Garlappi et al., 2006), risk
pricing (Augustin and Izhakian, 2020), savings behavior (Hansen
et al., 1999), job search (Nishimura and Ozaki, 2004) and the
possibility of speculative bubbles (Werner, 2019).1 Given the
salience of ambiguity in economic and financial research, it is
natural to wonder about how persistent it is. In the current paper,
we focus on the multiple prior model of ambiguity and consider
conditions under which ambiguity fades away in the long run as
a consequence of learning.

When a Bayesian decision-maker’s set of priors comprises
a finite set of iid models that includes the true model, Mari-
nacci (2002) shows that ambiguity fades away over time as
the decision-maker learns the true model. Marinacci and Mas-
sari (2019) drop the iid assumption and allow the problem to
be misspecified so that it is impossible for the decision-maker
to learn the true model. Nevertheless, they can still provide
tight conditions under which ambiguity fades away. However,
many applications, including all those mentioned above, feature

∗ Corresponding author at: Bocconi University, Italy.
E-mail address: F.Massari@uea.ac.uk (F. Massari).

1 The reader is referred to the survey article by Gilboa and Marinacci (2016)
for more examples.

decision-makers with sets of priors on the whole parameter
space, a set of positive Lebesgue measure. It is this latter setup
that we study in the current paper. We demonstrate that, un-
der natural assumptions, ambiguity fades away on all sequences
with finite maximum likelihood. Over time, all the posteriors
concentrate on a shrinking neighborhood of this estimate and
ambiguity fades away. Notably, the result holds even if the max-
imum likelihood estimate does not converge to a limit: all priors
eventually concentrate around the estimate, even if the estimate
itself changes over time.

The impact of ambiguity fading away will differ across models.
For example (I) (Kajii and Ui, 2006) give necessary and sufficient
conditions under which trade can take place under ambiguity.
Trade that does take place in these conditions will be unaffected
by ambiguity fading away, but additional opportunities for trade
may arise.2 (II) (Werner, 2019) shows that speculative trading
bubbles can arise when market participants have common but
ambiguous beliefs. Consequently, if ambiguity fades away, then
another explanation for long-run speculative trade is required.
(III) (Garlappi et al., 2006) consider mean–variance portfolio se-
lection with an ambiguous parameter. If ambiguity fades away,

2 In the model of Kajii and Ui (2006), trade between two players is possible
if and only if their sets of priors do not overlap. It is easy to see that if their
sets of priors do not overlap under ambiguity, then the players will differ in
their beliefs after ambiguity has faded away. Conversely, even if their sets of
priors overlap under ambiguity, it is possible that the players will differ in their
beliefs after ambiguity has faded away.
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then the model eventually returns to the classical mean–variance
model (Markowitz, 1952; Sharpe, 1970).3

There are other models that study the effect that learning
has on ambiguity, and some of these models (see, e.g. Epstein
and Schneider, 2007) allow for persistent ambiguity. The mul-
tiple prior model we describe relies on the strong law of large
numbers. Because the strong law of large numbers holds for each
prior, all priors concentrate on the same model and ambiguity
fades away.

2. Probabilities

We consider a family of models M = {Pθ : θ ∈ Θ} para-
metrized by a positive Lebesgue measure parameter set Θ ⊂ Rk,
defined on a σ -algebra Σ∞ of subsets of X∞ with representative
element x∞

= x1, x2, . . ., where X∞
:= ×

∞X is the infinite
Cartesian product of a state space X with representative element
x and σ -algebra Σ . With a slight abuse of notation, we use Pθ (xt )
to denote the probability that model Pθ attaches to the cylinder
with base xt (i.e., Cyl(xt ) := {x1, . . . , xt , Xt+1, Xt+2, . . .}), as well
as the likelihood that model Pθ attaches to the partial sequence
(x1, . . . , xt ).

Specifically, we focus on the case in which M is a regu-
lar exponential family in the natural parametrization — most
of the commonly used distributions form a regular exponential
family and can be re-parametrized into their natural parametriza-
tion form (e.g. Gaussian, Multinomial, Poisson, . . . ), which covers
most standard learning settings, including those cited in the
introduction.4

Definition 1 (Exponential Family). Let ν be a σ -finite measure on
the Borel subsets of Rk and H be the support of ν. Define

Θ :=

{
θ ∈ Rk

:

∫
H

exp(θ T x)ν(dx) < ∞

}
;

define a function ψ and a probability densities Pθ on X with
respect to ν by ψ(θ ) := ln

∫
X exp(θ T x)ν(dx) and Pθ (x) := exp(θ T x−

ψ(θ )). We refer to M := {Pθ (x)|θ ∈ Θ} as an exponential family
in the natural parametrization. An exponential family is regular if
Θ is an open set.

The prior information about the parameters is summarized by
prior distributions µ ∈ ∆Θ . The set of prior distributions is C.
For any prior distribution µ ∈ C the joint distribution of the
parameters and the observations is Pµ ∈ ∆(Θ × X∞), defined
by, for all sets A ⊆ Θ and all cylinders xt ,

Pµ(A × xt ) :=

∫
A
Pθ (xt )dµ.

We denote by µ(.|xt ) ∈ ∆Θ the usual posterior given the
observations xt ,5 while Pµ(.|xt ) ∈ ∆(Θ × X) is the one-step-
ahead predictive distribution of xt+1, given observations xt . By
definition, for all A ⊆ Θ we have

Pµ(A × xt+1|xt ) :=

∫
A
Pθ (xt+1|xt )dµ(.|xt )

3 Garlappi et al. (2006) and Hansen et al. (1999) belong to a special class
of ambiguous models known as ε-contamination models (see, e.g. Berger, 2013),
in which the set of priors consists of all models within some distance ε of
an estimated model. Such models satisfy our condition of a positive Lebesgue
measure of models in the support of the decision-maker.
4 We refer the reader to Nielsen and Garcia (2009) for a brief and schematic

description of the main characteristic of the exponential family and a useful
mapping between their canonical and natural parametrization.
5 We rule out the possibility of observing an event which is impossible

according to all models in M.

:=

∫
A
Pθ (xt+1|xt )

Pθ (xt )dµ∫
Θ
Pθ (xt )dµ

.

When A = Θ we use the lighter notation Pµ(x|xt ) := Pµ(Θ ×

xt+1|xt ).

3. Long-run ambiguity

As in Marinacci (2002), we consider the difference between
a decision-maker’s expected utility under the most advantageous
prior and under the least advantageous prior in C to be a measure
of the ambiguity that the decision-maker perceives in evalu-
ating an act. If the set of priors C is compact, as we always
assume, a tight sufficient condition for this difference to be zero
is that the posteriors calculated from all priors in C eventually
coincide (Marinacci and Massari, 2019).

Definition 2. Ambiguity fades away at path x∞
∈ X∞ if,

lim
t→∞

[
sup

µ′,µ′′∈C

∫
X

⏐⏐⏐dPµ′′

(x|xt ) − dPµ
′

(x|xt )
⏐⏐⏐] = 0 (1)

where, for each t > 0, xt indicates the first t realizations of path
x∞.

Definition 2 does not depend on the true model, which in any
practical learning situation is not known by the decision-maker.
It requires that all priors concentrate eventually on the same
parameter (or on a set of parameters with identical predictions)
on the realized path. Its relation with the familiar notion of
weak merging (Kalai and Lehrer, 1994) is as follows. In well-
specified learning problems all priors weakly merge to the true
and ambiguity fades away. However, ambiguity might and does
fade away in many misspecified learning problems in which the
priors do not weakly merge with the truth.

4. Main result

In this section, we identify conditions that guarantee that am-
biguity fades away in the long-run when Θ has positive Lebesgue
measure. These regularity conditions are borrowed from Grün-
wald (2007) conditions for the BIC approximation (Schwarz, 1978;
Clarke and Barron, 1990), to which we add a compactness as-
sumption on the set of priors C to ensure convergence.

Definition 3. The learning problem is regular if

A1: M is a regular exponential family;
A2: the set of priors, C, is compact;
A3: priors in C are continuous and strictly positive on every

compact subset of Θ .

Condition A1 is a high order assumption that limits our atten-
tion to densities that are measurable jointly in x and θ and regular
enough for the empirical maximum likelihood to be unique in
every period (in the canonical representation Θ is a convex
set). Further, it allows writing the Fisher information matrix as
the Hessian of the relative entropy. This assumption is stronger
than condition (i) of Berk (1966) and, together with A3, allows
us to drop all assumptions about the data generating process.
Unlike (Berk, 1966), we do not require draws to be iid. A2 is
needed to ensure uniform convergence in the set of priors (Mari-
nacci, 2002). A3 requires that priors have full, and thus common,
support. This assumption reflects the attitude of an agent that
does not rule out a-priori any parameter choice. The restriction on
priors to be strictly positive in every compact subset of Θ , rather
than Θ itself, is due to the fact that |Θ| = Rk for many members
of the exponential family in the canonical representation.
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Definition 4. θ̂ (xt ) denotes the (vector valued) maximum likeli-
hood estimator at xt :

θ̂ (xt ) = argmax
θ∈Θ

Pθ (xt );

The equality in the definition above is justified because As-
sumptions A1 and A3 guarantee that the support, Θ , is convex, so
that a unique maximum likelihood exists at every finite history.
We now present our main result: ambiguity fades away on all
sequences such that the sequence of maximum likelihoods is
bounded.

Theorem 1. If the learning problem is regular, ambiguity fades away
on all sequences such that lim sup ∥θ̂t∥ < ∞.

Proof. See Appendix. □

Theorem 1 makes no reference to the truth. The point of view
we adopt in Theorem 1 is empirical and differs from that of stan-
dard convergence results (e.g., Blackwell and Dubins (1962), Doob
(1949) and Berk (1966)). Instead of postulating the existence of a
true distribution and deriving almost sure results, we show that
convergence to the same predictive distributions occurs on all
paths in which the sequence of maximum likelihood parameters
is uniformly bounded. Being agnostic about the true distribution
renders our approach particularly suited to discuss convergence
in possibly misspecified learning environments.

Theorem 1 shows that ambiguity cannot persist in the long-
run in the multiple-priors Bayesian learning model with naturally
rich support. Its result naturally translates to exponential families
when expressed in their canonical parametrization. For example,
it tells us that:

• Ambiguity fades away on all sequences with frequency of
heads uniformly bounded away from 0 and 1 if the Bayesian
decision-maker believes draws are from an ambiguous coin
and C is a compact set of not-degenerate Beta priors on the
probability of heads ph (i.e., C = {Beta(α, β), α ∈ [a, b], β ∈

[c, d]}, with [a, b], [c, d] strictly positive, finite intervals). In
order to apply Theorem 1, we need to verify that on all
sequences with frequency of heads ph uniformly bounded
away from 0 and 1 the maximum likelihood estimator of
the natural parameter of Bernoulli family θ̂ satisfies the
condition lim sup ∥θ̂t∥ < ∞. From the conversion table
of Nielsen and Garcia (2009), we see that θph = ln ph

1−ph
;

so, (∥θ̂pht ∥)∞t=1 is bounded if and only if (p̂ht )
∞

t=1 is uniformly
bounded away from 0 and 1.

• Ambiguity fades away on all bounded sequences, if the
Bayesian decision-maker believes that realizations are Gaus-
sian with known positive variance σ and unknown mean
µ, and he has a compact set of non-degenerate Gaussian
priors on the values of µ(i.e., Cµ := {N (µµ

∗

, σµ
∗

), µµ ∈

[a, b], σµ ∈ [c, d]} with [a, b] finite and [c, d] finite strictly
positive intervals). In order to apply Theorem 1, we need to
verify that if the sequence is bounded, the maximum likeli-
hood estimator of the natural parameters of the Gaussian
family θ̂ = (θ̂1, θ̂2) ∈ R × (R−) satisfies the condition
lim sup ∥θ̂t∥ < ∞. From the conversion table of Nielsen and
Garcia (2009), we see that θ = ( µ

σ2 ,−
1

2σ2 ), so that θ̂ =

( µ̂t
σ̂2
t
,− 1

2σ̂2
t
), where µ̂t and σ̂t are the maximum likelihood

estimators of mean, µ̂t :=
1
t

∑t
τ=1 xt , and variance, σ̂ 2

t :=

1
t

∑t
τ=1

(
xτ − µ̂t

)
. So, lim sup ∥θ̂t∥ < ∞ because for all

t, µ̂t < ∞ on all bounded sequences and σ > 0 ⇒ σ̂t > 0
for all large t .

Appendix

In this appendix θ̂t := θ̂ (xt ), and we make use of the K–
L divergence. Let S(M,Θ) be the set of sequences such that
lim sup ∥θ̂t∥ < ∞.

Definition 5. The K–L divergence from Pθ̂t to Pθ is

D
(
Pθ̂t ∥ Pθ

)
:= EP

θ̂t

[
ln

Pθ̂t (x)

Pθ (x)

]
.

The proof is a standard application of the Laplace method. The
strategy is to show that for t large, for all priors in C, the value
of the integral of the unconditional probabilities is well approxi-
mated by the value it assumes on a shrinking interval around the
minimizer of the K–L divergence (i.e., by the maximum likelihood
model). Because Θ is convex and −D(Pθ̂t ∥ Pθ ) is strictly concave,
this minimizer is unique. Because the exponential family is reg-
ular x∞

∈ S(M,Θ) ⇒ (θ̂t )∞t=1 belongs to a compact subset of
Θ and the approximation below is never on the boundary of the
support.6

Proof of Theorem 1

Proof. C compact ⇒ ∀xt , argmaxµ∈C limt→∞

∫
X |dPg (x|xt ) −

dPh(x|xt )| exists. Thus, it suffices to show that if the learning prob-
lem is regular, then ∀x∞

∈ Ŝ(M,Θ) and ∀g, h ∈ C, limt→∞

∫
X |dP

g

(x|xt ) − dPh(x|xt )|= 0.

0 ≤ lim
t→∞

∫
X
|dPg (x|xt ) − dPh(x|xt )|

:= lim
t→∞

∫
X

⏐⏐⏐⏐∫
Θ

Pθ (x)
(
Pθ (xt )g(θ )
Pg (xt )

−
Pθ (xt )h(θ )
Ph(xt )

)
dθ

⏐⏐⏐⏐ dx
=

a lim
t→∞

∫
X

⏐⏐⏐⏐⏐⏐
∫
Θ

Pθ (x)

⎛⎝ e−tD
(
P
θ̂t

∥Pθ
)
g(θ )∫

Θ
e−tD

(
P
θ̂t

∥Pθ
)
g(θ ) dθ

Pθ̂t (x
t )

Pθ̂t (x
t )

−
e−tD

(
P
θ̂t

∥Pθ
)
h(θ )∫

Θ
e−tD

(
P
θ̂t

∥Pθ
)
h(θ ) dθ

Pθ̂t (x
t )

Pθ̂t (x
t )

⎞⎠ dθ

⏐⏐⏐⏐⏐⏐ dx
=

b
∫
X
lim
t→∞

⏐⏐⏐⏐⏐⏐
∫
Θ

Pθ (x)

⎛⎝ e−tD
(
P
θ̂t

∥Pθ
)
g(θ )∫

Θ
e−tD

(
P
θ̂t

∥Pθ
)
g(θ ) dθ

−
e−tD

(
P
θ̂t

∥Pθ
)
h(θ )∫

Θ
e−tD

(
P
θ̂t

∥Pθ
)
h(θ ) dθ

⎞⎠ dθ

⏐⏐⏐⏐⏐⏐ dx
=

c,d
∫
X
lim
t→∞

⏐⏐⏐⏐⏐⏐
∫
Bt
Pθ (x)

⎛⎝ e−tD
(
P
θ̂t

∥Pθ
)
g(θ )∫

Bt
e−tD

(
P
θ̂t

∥Pθ
)
g(θ ) dθ

−
e−tD

(
P
θ̂t

∥Pθ
)
h(θ )∫

Bt
e−tD

(
P
θ̂t

∥Pθ
)
h(θ ) dθ

⎞⎠ dθ

⏐⏐⏐⏐⏐⏐ dx

≤
e

∫
X
lim
t→∞

⏐⏐⏐⏐⏐⏐⏐⏐
∫
Bt
Pθ (x)max

⎧⎪⎪⎨⎪⎪⎩
⏐⏐⏐⏐⏐⏐⏐⏐

√
(2π )kg+

t√
tk det(I−t )

√
(2π )kg−

t√
tk det(I+t )

−

√
(2π )kh−

t√
tk det(I+t )

√
(2π )kh+

t√
tk det(I−t )

⏐⏐⏐⏐⏐⏐⏐⏐ ;
6 For non-regular member of the exponential family, the proof below cannot

be adopted for those sequences on which the maximum likelihood estimator are
within an order 1/

√
t to the boundary of θ because Laplace approximation is

truncated. For those sequences the shape of Pθ (xt ) becomes a truncated Gaussian
with a reduced value of the integral in Lemma 1. For those sequences, however,
the discrepancy in the approximation is only a constant (Xie and Barron, 2000),
and it would not affect our result.
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√

(2π )kg−
t√

tk det(I+t )
√

(2π )kg+
t√

tk det(I−t )

−

√
(2π )kh+

t√
tk det(I−t )

√
(2π )kh−

t√
tk det(I+t )

⏐⏐⏐⏐⏐⏐⏐⏐
⎫⎪⎪⎬⎪⎪⎭

⏐⏐⏐⏐⏐⏐⏐⏐ dx

≤
f
∫
X
lim
t→∞

P+(x)max

⎧⎪⎪⎨⎪⎪⎩
⏐⏐⏐⏐⏐⏐⏐⏐

√
(2π )kg+

t√
tk det(I−t )

√
(2π )kg−

t√
tk det(I+t )

−

√
(2π )kh−

t√
tk det(I+t )

√
(2π )kh+

t√
tk det(I−t )

⏐⏐⏐⏐⏐⏐⏐⏐;⏐⏐⏐⏐⏐⏐⏐⏐
√

(2π )kg−
t√

tk det(I+t )
√

(2π )kg+
t√

tk det(I−t )

−

√
(2π )kh+

t√
tk det(I−t )

√
(2π )kh−

t√
tk det(I+t )

⏐⏐⏐⏐⏐⏐⏐⏐
⎫⎪⎪⎬⎪⎪⎭ dx

=

∫
X
lim
t→∞

P+(x)max

{⏐⏐⏐⏐⏐g+

t

g−

t

√
det(I+t )√
det(I−t )

−
h−

t

h+

t

√
det(I−t )√
det(I+t )

⏐⏐⏐⏐⏐ ;⏐⏐⏐⏐⏐g−

t

g+

t

√
det(I−t )√
det(I+t )

−
h+

t

h−

t

√
det(I+t )√
det(I−t )

⏐⏐⏐⏐⏐
}
dx

=
g 0.

(a) A known result for members of the exponential family (e.g.,
Grünwald, 2007, Chapter 8) is that

Pg (xt ) =

∫
Θ

Pθ (xt )g(θ ) dθ =

∫
Θ
e−tD

(
P
θ̂t

∥Pθ
)
g(θ ) dθ

Pθ̂t (x
t )

.

(b) We can exchange the order of limit and integration by the
Lebesgue dominated convergence theorem.

(c) Bt is a neighborhood of the maximum likelihood that, in all
dimensions, converges to zero at a rate slightly slower than√

1
t . That is Bt := {θ ∈ Θ ⊂ Rk

: ∀i = 1, . . . , k, |θ i − θ̂ i| ≤

t−
1
2 −α

} for some α ∈ (0, .5).

(d) By Lemma 1(i),
∫
Θ\Bt

e−tD
(
P
θ̂t

∥Pθ
)
h(θ ) dθ → 0 exponentially

fast and it can be ignored in the calculation of the limit.
(e) By Lemma 1(ii), with I := EP

θ̂t

[
−

∂2

∂θi∂θj
ln Pθ

]
θ=θ̂t

, det(I−t ) =

infθ ′∈Bt det(I(θ
′)), det(I+t ) = supθ ′∈Bt det(I(θ

′)), g−

t =

infθ ′∈Bt g(θ
′), g+

t = supθ ′∈Bt g(θ
′), h−

t = infθ ′∈Bt h(θ
′), h+

t =

supθ ′∈Bt h(θ
′).

(f) With P+(x) = supθ∈Bt Pθ (x) < 1.
(g) Continuity and strict positivity of g(·), h(·) in det(I(·)) in Bt

guarantee that for all x∞
∈ Ŝ(M,Θ) the following limit

holds7:

max

{⏐⏐⏐⏐⏐g+

t

g−

t

√
det(I+t )√
det(I−t )

−
h−

t

h+

t

√
det(I−t )√
det(I+t )

⏐⏐⏐⏐⏐ ;⏐⏐⏐⏐⏐g−

t

g+

t

√
det(I−t )√
det(I+t )

−
h+

t

h−

t

√
det(I+t )√
det(I−t )

⏐⏐⏐⏐⏐
}

→ 0. □

Lemma 1. Let M be a regular member of the exponential family
parametrized by Θ and µ a prior that satisfies A3, then, ∀x∞

∈

Ŝ(M,Θ),∫
Θ

e−tD
(
P
θ̂t

∥Pθ
)
µ(θ )dθ =

∫
Θ\Bt

e−tD
(
P
θ̂t

∥Pθ
)
µ(θ ) dθ

+

∫
Bt
e−tD

(
P
θ̂t

∥Pθ
)
µ(θ ) dθ,

7 By construction, for all ∀x∞
∈ Ŝ(M,Θ), Bt is a subset of a compact of

Θ; thus, by (A3), g(·) and h(·) are continuous and bounded away from zero.
det(I(·)) is continuous bounded away from zero because M is a member of the
exponential family (A1).

and, for t large, the following bounds holds uniformly when Bt
is a neighborhood of the maximum likelihood such that diam(Bt )
→

t→∞ 0 at a rate slightly slower than
√

1
t .

(i) First integral: ∃k > 0 : I1 =
∫
Θ\Bt

e−tD
(
P
θ̂t

∥Pθ
)
µ(θ )dθ < e−rt2α .

(ii) Second integral: Let I2 =
∫
Bt
e−tD

(
P
θ̂t

∥Pθ
)
µ(θ )dθ; I(θt ) :=

EP
θ̂t

{
−

∂2

∂θi∂θj
ln Pθ

}
θ=θ̂t

be the Fisher information evaluated at the

maximum likelihood parameter,8 k be the dimensionality of Θ ,
det(I−t ) = infθ ′∈Bt det(I(θ

′)), det(I+t ) = supθ ′∈Bt det(I(θ
′)); and

µ−

t = infθ ′∈Bt µ(θ
′), µ+

t = supθ ′∈Bt µ(θ
′), then

µ−

t (2π )k/2√
tkdet(I+t )i

≤ I2 ≤
µ+

t (2π )k/2√
tk det(I−t )

.

Proof. Let Bt := {θ ∈ Θ ⊂ Rk
: ∀i = 1, . . . , k, |θ i − θ̂ i| ≤ t−

1
2 −α

}

for some α ∈ (0, .5). To gain intuition, take α very small, so that
Bt is a neighborhood of the maximum likelihood that shrinks to
0 at a rate slightly slower than 1/

√
t in all dimensions. Because

x∞
∈ Ŝ(M,Θ) and µ is continuous and positive on all compact

subsets of Θ (by A3), there is a T : ∀t > T , Bt ⊂ Θ̂ where Θ̂ is
a compact subset of Θ in which µ > ϵ > 0 for some positive ϵ.
We always assume t > T .

The proof is done by performing a second-order Taylor ex-
pansion of D(Pθ̂t ∥ Pθ ) to bound the two integrals. M is an
exponential family; thus, D(Pθ̂t ∥ Pθ ) can be exactly approximated
in Bt as follows (see Grünwald, 2007, chapter 19):

D
(
Pθ̂t ∥ Pθ

)
=

1
2

(
θ̂t − θ

)T
I(θ∗)

(
θ̂t − θ

)
, (2)

for some θ∗
∈ Bt such that θ∗ lies between θ and θ̂t — here,

I := EP
θ̂t

[
−

∂2

∂θi∂θj
ln Pθ

]
θ=θ̂t

; because M is an exponential family,

this is the Fisher information matrix evaluated at the maximum
likelihood estimator.

(i) First integral: Because D
(
Pθ̂t ∥ Pθ

)
, as a function of θ , is

strictly convex, has a minimum at θ = θ̂t , and is increasing in
∥θ − θ̂t∥, the following holds:

0 <
∫
Θ\Bt

e−tD
(
P
θ̂t

∥Pθ
)
g(θ ) dθ <

∫
Θ\Bt

e−t minθ∈Θ\Bt D
(
P
θ̂t

∥Pθ
)
g(θ ) dθ

where

min
θ∈Θ\Bt

D
(
Pθ̂t ∥ Pθ

)
=

(a) min
θ∈∂Bt

D
(
Pθ̂t ∥ Pθ

)
≥

(b) 1
2
t−1+2α min

θ∈int(Θ)
1T I(θ )1,

where (a) holds because strict convexity of D(·∥·) implies that the
D(·∥·) is minimal at the boundary of Bt ; and (b) holds, with 1
being a k-dimensional vector of 1s, because of the definition of
Bt and Eq. (2). So, since I(θ ) is continuous and > 0 for all θ ∈ Θ ,
and also

∫
Θ\Bt

µ(θ ) dθ ≤ 1,

0 <
∫
Θ\Bt

e−tD
(
P
θ̂t

∥Pθ
)
g(θ ) dθ

<

∫
Θ\Bt

e−t
(
1
2 t

−1+2α minθ∈int(Θ) I(θ )
)
g(θ ) dθ < e−rt2α ,

for r =
1
2 minθ∈int(Θ) I(θ ) > 0.

(ii) Second integral: by Eq. (2),

I2 =

∫
Bt
e−tD

(
P
θ̂t

∥Pθ
)
g(θ ) dθ =

∫
Bt
e−

t
2 (θ̂t−θ )

T I(θ ′)(θ̂t−θ )g(θ ) dθ

8 Which is positive definite because M is an exponential family.
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where θ ′ depends on θ . Let I−t = argminθ ′∈Bt det(I(θ
′)) and I+t =

argmaxθ ′∈Bt det(I(θ
′)); it follows that

g−

t

∫
Bt
e−

t
2 (θ̂t−θ )

T I+t (θ̂t−θ )dθ ≤ I2 ≤ g+

t

∫
Bt
e−

t
2 (θ̂t−θ )

T I−t (θ̂t−θ )dθ.

Performing the substitutions zT =

(√
t(θ̂t − θ )

)T
A+

t on the left

integral and zT =

(√
t(θ̂t − θ )

)T
A−

t on the right integral — where
A+

t and A−

t are matrixes such that A+

t (A
+

t )T = I+t and A−

t (A
−

t )T =

I−t , respectively —, we get

g−

t√
tk det(I+t )

∫
|z|<|tα1T A+

t |

e−
1
2 z

T zdz ≤ I2

≤
g+

t√
tk det(I−t )

∫
|z|<|tα1T A−

t |

e−
1
2 z

T zdz,

— where for a vector x, the vector |x| indicates the vector whose
entries are the absolute values of x and k is the dimensionality of
Θk — and recognize these integrals as proportional to standard
multivariate Gaussian. Because, as t → ∞, I−t → I(θ̂t ) and
I+t → I(θ̂t ), the domain of integration tends to infinity for both
integrals, they both converge to

√
(2π )k.

This approximation holds uniformly for all x∞
∈ Ŝ(M,Θ)

because (i) the bound on I1 does not depend on xt , and (ii)
convergence of I2 is uniform because A1 and A3 guarantee that
g(θ ) and I(θ ) are continuous, positive functions of θ over every
compact subset of Θ . □
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